Life Cycle circularity and the circularity package in openLCA

M.Eng Julia Cilleruelo Palomero,
Sustainability Consultant & Researcher, GreenDelta GmbH

cilleruelo@greendelta.com

Context

- LCA has the potential to take into account all the Life Cycle Stages
 - -> wide perspective
 - -> not really prepared for circularity of materials
- Circular Economy -> measured by circularity indicators
 - -> often stays "superficial" / only takes into account later production stages

Circularity Indicators

	Fully linear system	Fully circular system	
MCI	0.1	1	
CI	0	1	

Material Circularity Indicator

$$MCI_P = 1 - LFI \cdot F(X)$$
 ; $LFI = \frac{V + W}{2M + \frac{W_F - W_C}{2}}$; $X = \frac{L}{L_{av}} \cdot \frac{U}{U_{av}}$

V = virgin materialW = waste

L = life duration

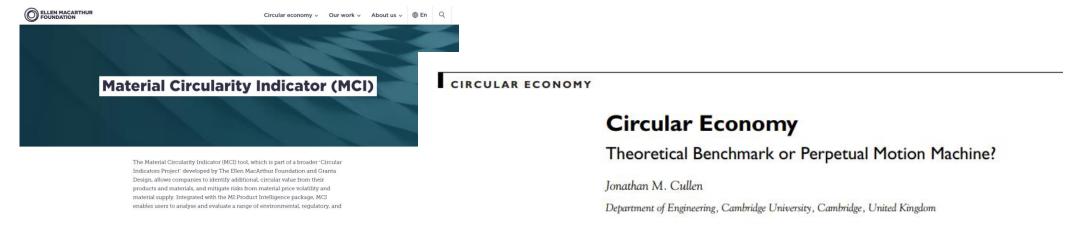
U = # uses

Circularity Index

$$CI = \frac{recovered\ EOL\ material}{total\ material\ demand}\ .\ (1\ - \frac{energy\ required\ to\ recover\ material}{energy\ required\ for\ primary\ production})$$

Ellen MacArthur Foundation, "Material Circularity Indicator (MCI) Methodology," 2019. [Online]. Available: https://emf.thirdlight.com/link/3jtevhlkbukz-9of4s4/@/preview/1?o. [Accessed 18 April 2023].

J. Cullen, "Theoretical Benchmark or Perpetual Motion Machine?," Journal of Industrial Ecology, 21, pp. 483-486, 2017.


Goal

Integrate a quantification of Circularity into Life Cycle Assessment:

- Allow LCA models to also calculate and quantify circular economy
- Allow Circular Economy Studies to <u>quantify</u> the improvements with circularity indicators
- Allow the assessment to reach a full Life Cycle

Ellen MacArthur Foundation, "Material Circularity Indicator (MCI) Method https://emf.thirdlight.com/link/3jtevhlkbukz-9of4s4/@/preview/1?o. [Ac

J. Cullen, "Theoretical Benchmark or Perpetual Motion Machine?," Journal of Industrial Ecology, 21, pp. 483-486, 2017.

How is an LCA database adapted for CE?

GreenDelta

OPENLCA
Avoid double counting

(applied to ecoinvent cut-off)

Apply new elementary flows to shadow circularity information

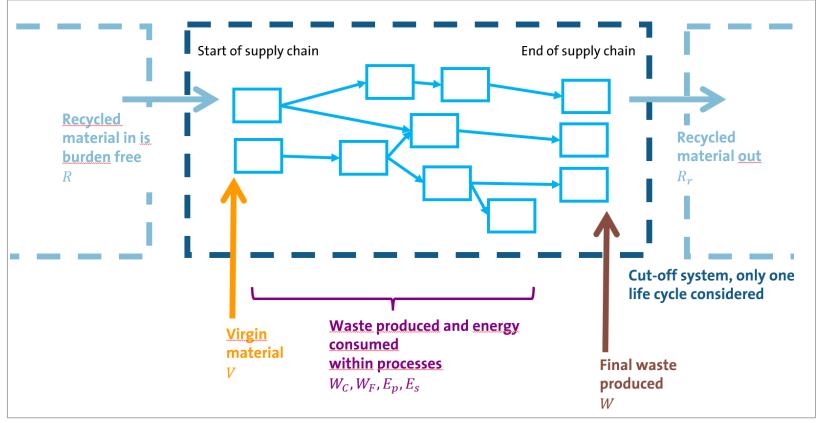
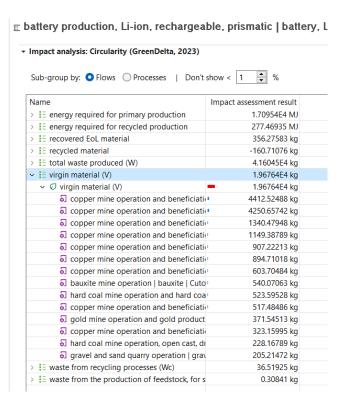
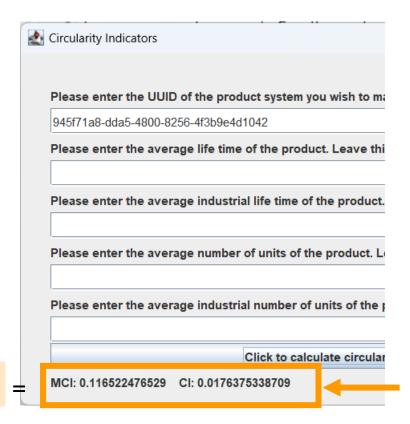


Figure 1: Circularity variables and their placing in an LCA database

Rest of variables can be calculated from these or from user input

Result




battery production, Li-ion, rechargeable, prismatic | battery, Li-ion, rechargeable, prismatic | Cutoff, U FU = 1 item (454kg, EV battery)

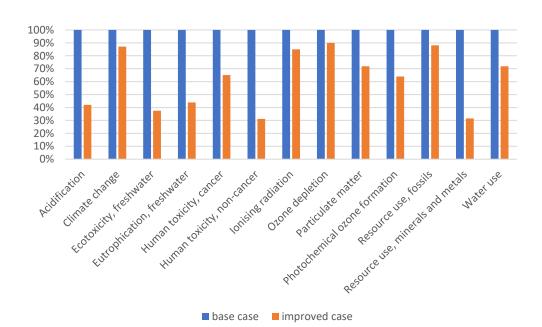
Circularity Results

- Material extracted from Earth is 43x the weight of the battery
- 356kg of recovered material
 - 122kg from EoL treatment
 - 234kg from supply chain
- 1709MJ for primary production
 - 38% anode supply chain
 - 38% cathode supply chain
 - 20% Al. supply chain

Linear System

Result II

Improvements in circularity


VIRGIN MATERIAL -> We saw that copper was a hotspot from the big amounts of "Gangue, in ground" extracted in copper mining.

Improved case: use 50% copper from recycled sources

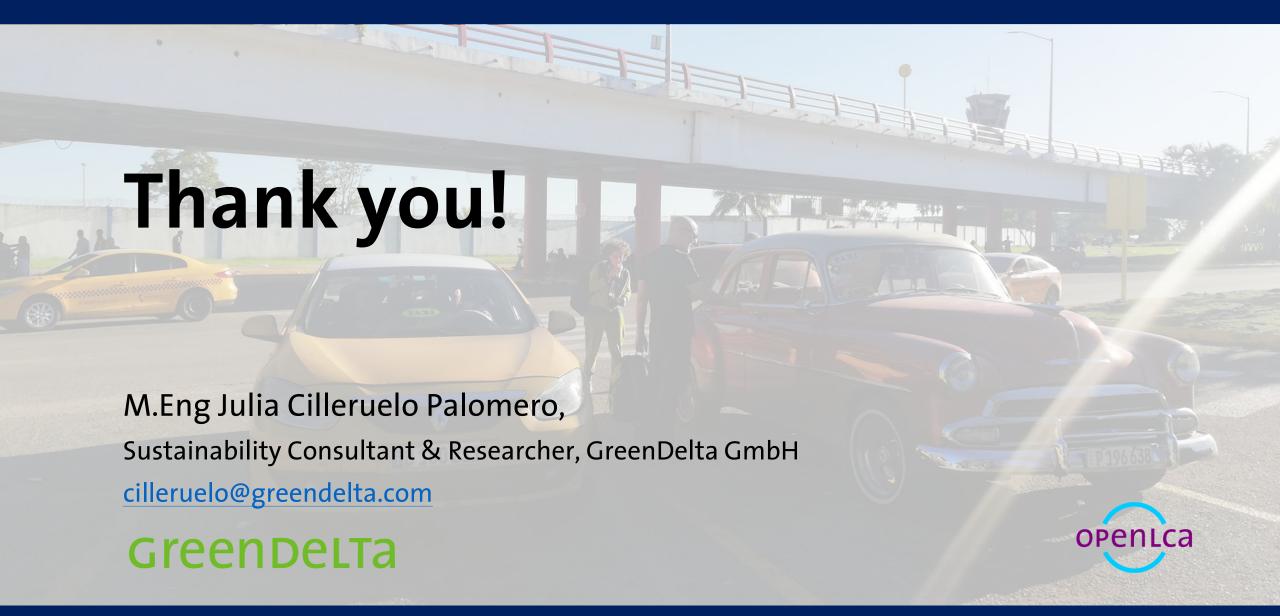
Circularity Indicators

	Base case	Improved case		
Name	Impact assessment result		Unit	% decrease
energy required for primary production	17095.4	14242.8	MJ	17
energy required for recycled production	277.5	115.3	MJ	58
recovered EoL material	356.3	327.1	kg	8
recycled material	-160.7	-168.9	kg	-5
total waste produced (W)	41604.5	15815.8	kg	62
virgin material (V)	19676.4	7292.6	kg	63
waste from recycling processes (Wc)	36.5	27.8	kg	24
waste from the production of secondary feedstock, (Wf)	0.3	0.3	kg	10
MCI (from LCA)	0.11652	0.13807	•	
CI (from LCA)	0.01764	0.04355		

LCA normalised results (EF3.0)

Next steps: investigate EoL circular strategies

Summary & Conclusion


WF HAVF SHOWN:

The integration of Circularity Indicators into an LCA database and software.

RESULTS DEMONSTRATE:

- There are big numbers of virgin material used, and waste produced, in the supply chain of the investigated system, which should not be ingored.
- Targeting improvements for the Circular Economy will benefit from a life cycle perspective.
- Cilleruelo Palomero, J., Ciroth, A., Freboeuf, L., Sonnemann, G., (2024): Integrating circularity into Life Cycle Assessment: Circularity with a life-cycle perspective, Journal of Cleaner Environmental Systems. https://doi.org/10.1016/j.cesys.2024.100175.
- Next Circularity Package update by end of the year, ontop of ecoinvent 3.12 cut-off

International Industrial Ecology Day 2025

