Modelling Chemicals in LCA

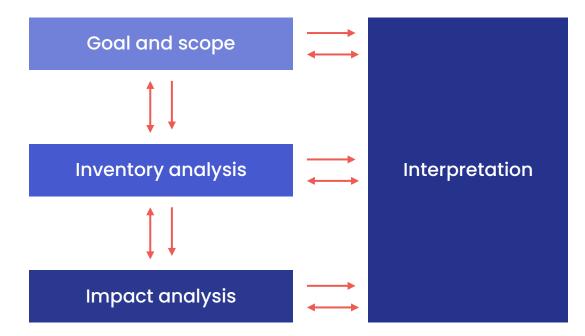
Dr. Jonas Hoffmann, LCA Consultant and Researcher

GreenDelta GmbH

GreenDelta

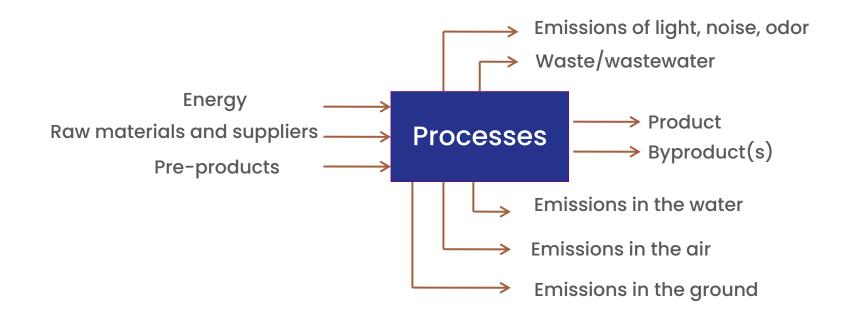
What is LCA?

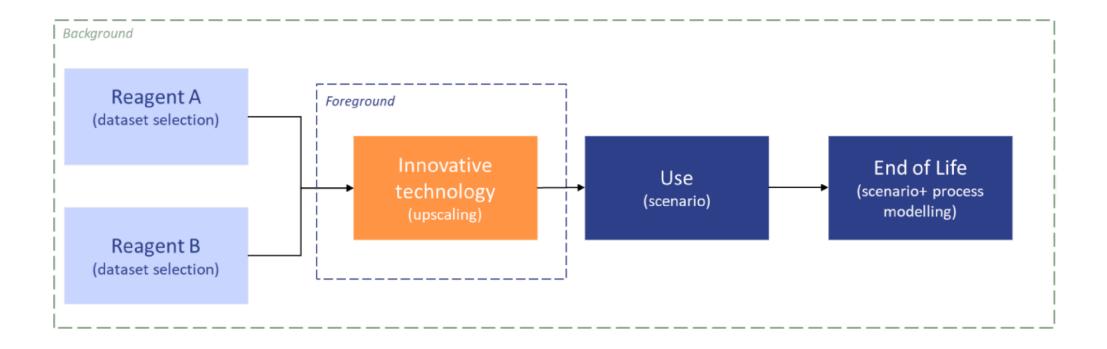
Definition (ISO 14044): 'Life Cycle Assessment (LCA) is a compilation and evaluation of inputs, outputs and the potential environmental impacts of a product system through its life cycle.'


European Commission, Joint Research Centre, Cristobal-Garcia, J., Pant, R., Reale, F. et al., Life cycle assessment for the impact assessment of policies, Publications Office, 2016, https://data.europa.eu/doi/10.2788/318544

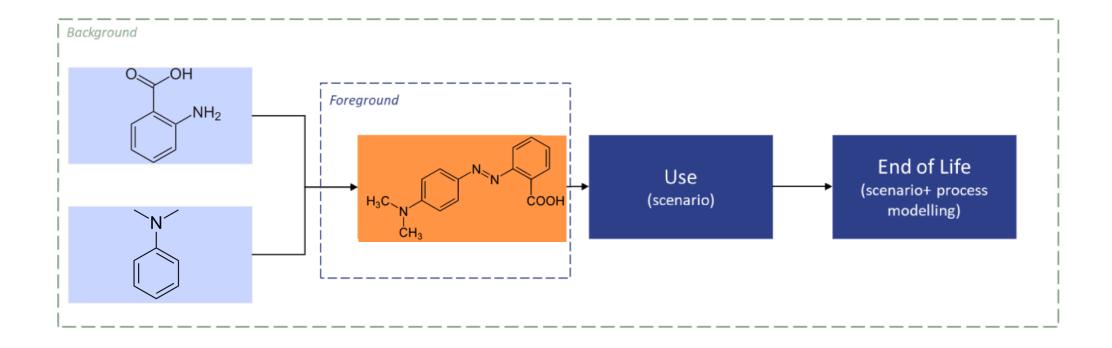
Life Cycle Assessment: Structure

- LCA approach is mainly based on two standards: ISO 14040:2006 and ISO 14044:2006
- LCA is performed in four steps:
 - 1. Goal and Scope definition
 - 2. Life Cycle Inventory
 - 3. Life Cycle Impact Analysis
 - 4. Life Cycle Interpretation
- Most important concept in LCA: Functional Unit

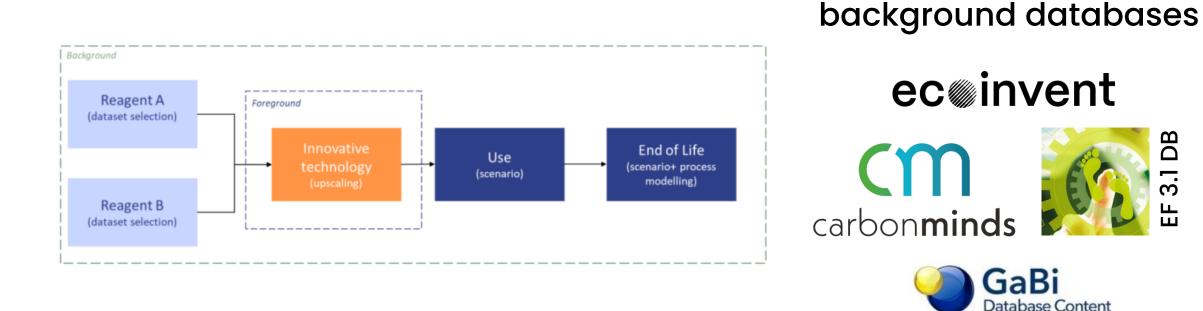

Life Cycle Assessment framework


Life Cycle Inventory – Data needed

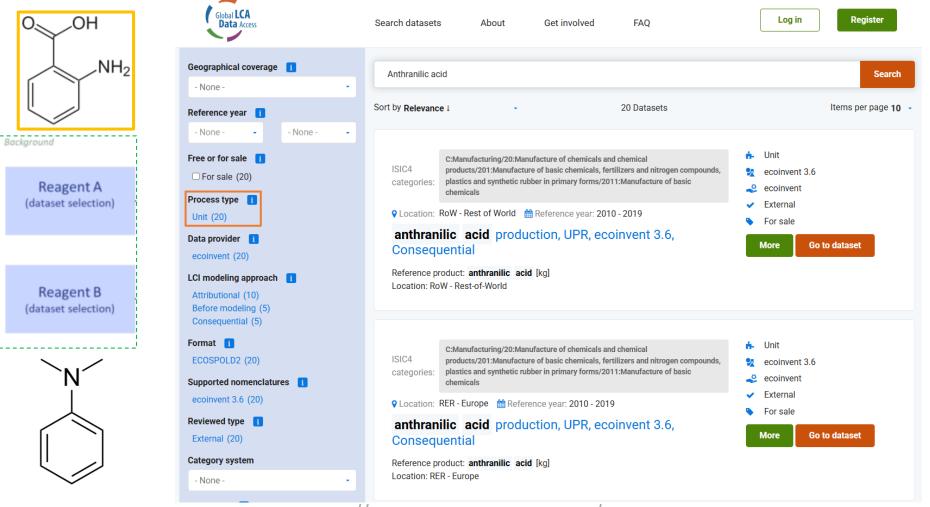
Inputs and outputs of a process to be included in the LCI


Life Cycle Inventory: Data generation and collection

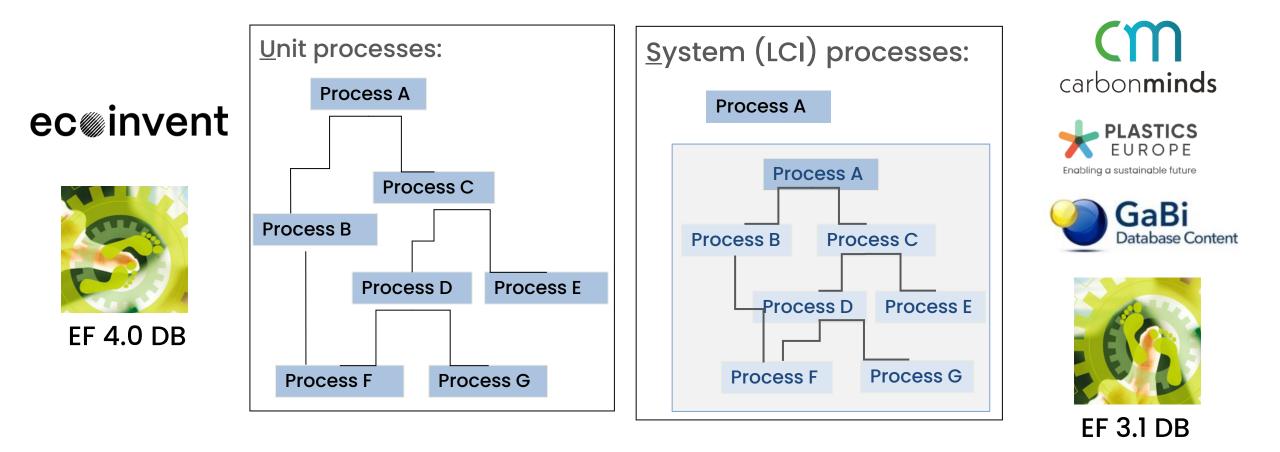
European Commission, Joint Research Centre, Abbate, E., Garmendia Aguirre, I., Bracalente, G., Mancini, L., Tosches, D., Rasmussen, K., Bennett, M.J., Rauscher, H. and Sala, S., Safe and Sustainable by Design chemicals and materials – Methodological Guidance, Publications Office of the European Union, Luxembourg, 2024, https://data.europa.eu/doi/10.2760/28450, JRC138035.


Life Cycle Inventory: Data generation and collection

European Commission, Joint Research Centre, Abbate, E., Garmendia Aguirre, I., Bracalente, G., Mancini, L., Tosches, D., Rasmussen, K., Bennett, M.J., Rauscher, H. and Sala, S., Safe and Sustainable by Design chemicals and materials – Methodological Guidance, Publications Office of the European Union, Luxembourg, 2024, https://data.europa.eu/doi/10.2760/28450, JRC138035.


Life Cycle Inventory: Data generation and collection

European Commission, Joint Research Centre, Abbate, E., Garmendia Aguirre, I., Bracalente, G., Mancini, L., Tosches, D., Rasmussen, K., Bennett, M.J., Rauscher, H. and Sala, S., Safe and Sustainable by Design chemicals and materials – Methodological Guidance, Publications Office of the European Union, Luxembourg, 2024, https://data.europa.eu/doi/10.2760/28450, JRC138035.


Life Cycle Inventory: Dataset selection

https://www.globallcadataaccess.org/search

Where to LCI for chemicals?

Datasets in LCI databases: Bicycle

Inputs						
Flow	Category	Amount	Unit	Costs/Re	Uncertai	Avoide
Aluminium	Resource/in ground	6.22153	🚥 kg		none	
Anhydrite	Resource/in ground	1.31351E	🚥 kg		none	
Antimony	Resource/in ground	2.24515E	🚥 kg		none	
Ø Argon-40	Resource/in air	0.02252	🚥 kg		none	
Arsenic	Resource/in ground	7.53473E	🚥 kg		none	
🖉 Barium	Resource/in ground	0.06701	🚥 kg		none	
🖉 Basalt	Resource/in ground	0.00900	🚥 kg		none	
🖉 Borax	Resource/in ground	1.04062E	🚥 kg		none	
🖉 Boron	Resource/in ground	8.36654E	📟 kg		none	
🖉 Bromine	Resource/in water	1.35318E	🚥 kg		none	
🖉 Cadmium	Resource/in ground	1.50582E	🚥 kg		none	
	Resource/in ground	4.12170	📖 ka		none	
Outputs					none	
•	Category	Amount		Costs/Re	Uncertai	Avoide
Flow	Category Emission to air/high	Amount	Unit	Costs/Re	Uncertai	Avoide
Flow 7 1,2-Dichlorobenze	Emission to air/high	Amount 2.98856E	Unit kg	Costs/Re	Uncertai none	Avoide
Flow 7 1,2-Dichlorobenze 7 1,2-Dichlorobenze	2.3	Amount 2.98856E 9.07175E	Unit I kg	Costs/Re	Uncertai	Avoide
Flow 7 1,2-Dichlorobenze 7 1,2-Dichlorobenze 7 1,3-Dioxolan-2-one	Emission to air/high Emission to water/su	Amount 2.98856E	Unit IIII kg IIII kg IIII kg	Costs/Re	Uncertai none none	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,4-Butanediol	Emission to air/high Emission to water/su Emission to water/u	Amount 2.98856E 9.07175E 1.35174E	Unit Witkg Unitkg Kg Kg Kg	Costs/Re	Uncertai none none none	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,4-Butanediol 1,4-Butanediol	Emission to air/high Emission to water/su Emission to water/u Emission to air/high	Amount 2.98856E 9.07175E 1.35174E 2.17547E	Unit Witkg Kg Kg Kg Kg Kg Kg	Costs/Re	Uncertai none none none none	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,4-Butanediol 1,4-Butanediol 1,4-Butanediol 1,4-Butanediol	Emission to air/high Emission to water/su Emission to water/u Emission to air/high Emission to water/su	Amount 2.98856E 9.07175E 1.35174E 2.17547E 5.00358E	Unit Witkg Kg Kg Kg Kg Kg Kg Kg	Costs/Re	Uncertai none none none none none	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,4-Butanediol 1,4-Butanediol 1,4-Butanediol 1,Pentanol 1-Pentanol	Emission to air/high Emission to water/su Emission to water/u Emission to air/high Emission to water/su Emission to air/high	Amount 2.98856E 9.07175E 1.35174E 2.17547E 5.00358E 1.43931E	Unit W kg kg kg kg kg kg kg kg kg kg	Costs/Re	Uncertai none none none none none none	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,4-Butanediol 1,4-Butanediol 1,4-Butanediol 1-Pentanol 1-Pentanol 1-Pentene	Emission to air/high Emission to water/su Emission to water/u Emission to air/high Emission to water/su Emission to air/high Emission to water/su	Amount 2.98856E 9.07175E 1.35174E 2.17547E 5.00358E 1.43931E 3.45437E	Unit Witkg Kg Kg Kg Kg Kg Kg Kg Kg Kg K	Costs/Re	Uncertai none none none none none none none	Avoide
Coutputs Flow I,2-Dichlorobenze I,2-Dichlorobenze I,3-Dioxolan-2-one I,4-Butanediol I,4-Butanediol I,4-Butanediol I-Pentanol I-Pentanol I-Pentene I-Pentene I-Pentene I,2,2,4-Trimethyl pe	Emission to air/high Emission to water/su Emission to water/u Emission to air/high Emission to air/high Emission to air/high Emission to water/su Emission to air/high	Amount 2.98856E 9.07175E 1.35174E 2.17547E 5.00358E 1.43931E 3.45437E 1.67038E	Unit Witkg Kg Kg Kg Kg Kg Kg Kg Kg Kg K	Costs/Re	Uncertai none none none none none none none n	Avoide
Flow 7 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dioxolan-2-one 1,3-Dioxolan-2-one 1,4-Butanediol 1,4-Butanediol 1,4-Butanediol 1-Pentanol 1-Pentanol 1-Pentene 1-Pentene	Emission to air/high Emission to water/su Emission to water/u Emission to air/high Emission to air/high Emission to air/high Emission to water/su Emission to air/high Emission to water/su	Amount 2.98856E 9.07175E 1.35174E 2.17547E 5.00358E 1.43931E 3.45437E 1.67038E 2.61042E	Unit W kg kg kg kg kg kg kg kg kg kg	Costs/Re	Uncertai none none none none none none none n	Av

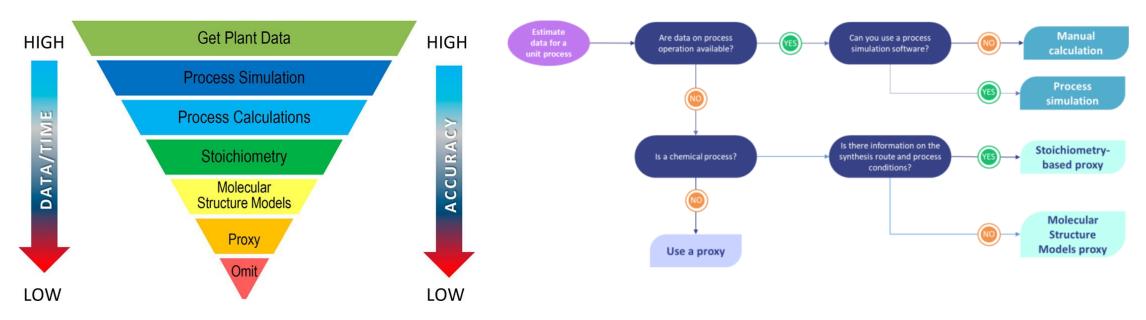
General information Inputs/Outputs Administrative information Modeling and validation Parameters Allocation

J Inputs/Outputs: bicycle production | bicycle | Cutoff, U - RER

Flow	Category	Amount	Unit	0
🕸 aluminium, wrought alloy	242:Manufacture of	7.53250	🚥 kg	
chromium steel removed by turning, average, co	259:Manufacture of	0.15900	🚥 kg	
electricity, medium voltage	351:Electric power g	6.89020	🚥 kWh	
🕸 heat, district or industrial, natural gas	353:Steam and air co	13.58025	🚥 MJ	
🕸 heat, district or industrial, other than natural gas	353:Steam and air co	0.19270	📼 MJ	
🕸 injection moulding	222:Manufacture of	1.95750	🚥 kg	
🕸 polyethylene, high density, granulate	201:Manufacture of	1.95750	🚥 kg	
polyurethane, flexible foam	201:Manufacture of	0.03000	🚥 kg	
🕸 powder coat, aluminium sheet	259:Manufacture of	0.35000	🚥 m2	
road vehicle factory	410:Construction of	9.36930E	💷 ltem(s)	
🕸 section bar extrusion, aluminium	242:Manufacture of	3.76630	🚥 kg	

Outputs

Flow	Category	Amount	Unit	
🕄 bicycle	309:Manufacture o	1.00000	—	Item
🛚 municipal solid waste	382:Waste treatment	4.50000		kg
🛛 used bicycle	383:Materials recove	1.00000		ltem(s)
🛚 wastewater, average	370:Sewerage/3700:S	0.00073		m3
🛛 wastewater, average	370:Sewerage/3700:S	1.82394E		m3
🛛 Water	Emission to air/unsp	0.00011		m3


Life Cycle Inventory: Dataset selection

https://www.globallcadataaccess.org/search

Life Cycle Inventory - Data needed

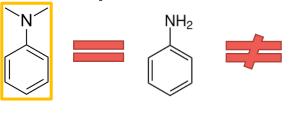
Parvatker et al., ACS Sus. Chem. & Eng. 2019, 7(1).

European Commission, Joint Research Centre, Abbate, E., Garmendia Aguirre, I., Bracalente, G., Mancini, L., Tosches, D., Rasmussen, K., Bennett, M.J., Rauscher, H. and Sala, S., Safe and Sustainable by Design chemicals and materials – Methodological Guidance, Publications Office of the European Union, Luxembourg, 2024, https://data.europa.eu/doi/10.2760/28450, JRC138035

Method 6 and 7:

Proxy:

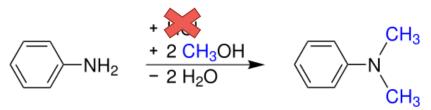
- Relies on existing LCI data of similar (proxy) chemicals
- Used when no synthesis or stoichiometric data is available

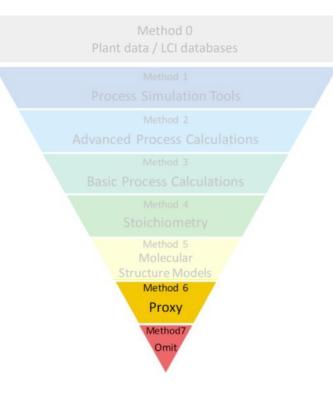

#Chemicals

#Chemicals

a market for chemical, organic | chemical, organic | Cutoff, U - GLO

C:Manufacturing/20:Manufacture of chemicals and chemical products/2

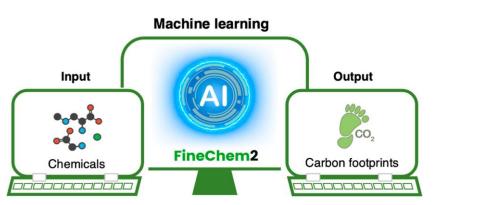

a market for chemical, inorganic | chemical, inorganic | Cutoff, U - GLO C:Manufacturing/20:Manufacture of chemicals and chemical products/20



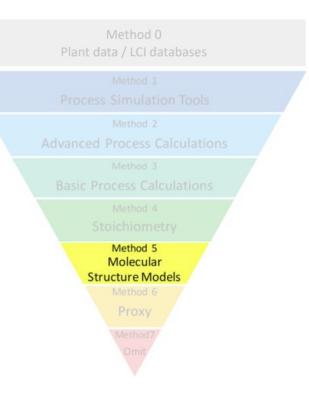
Omitting:

- Least preferred, yet common when data is missing
- Impacts fall below defined cut-off criteria (e.g., <5% of mass)

e.g. catalyst, additives



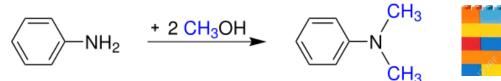
Parvatker et al., ACS Sus. Chem. & Eng. **2019**, 7(1).


Method 5: Molecular Structure Models (QSARs)

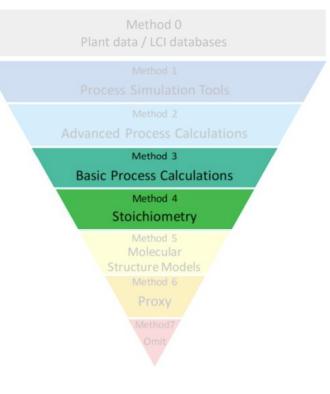
RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{n} (Y_i - f(x_i))^2}$$

mean PE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \frac{|Y_i - f(x_i)|}{Y_i}$$

median PE = median
$$\left(\frac{|Y_i - f(x_i)|}{Y_i}\right)$$


Parvatker et al., ACS Sus. Chem. & Eng. **2019**, 7(1).

G. Wernet et. al., *Green Chemistry* 2009, 11 (1826), D. Zhang et. al., ACS Sustainable Chem. Eng. 2024, 12 (2007).

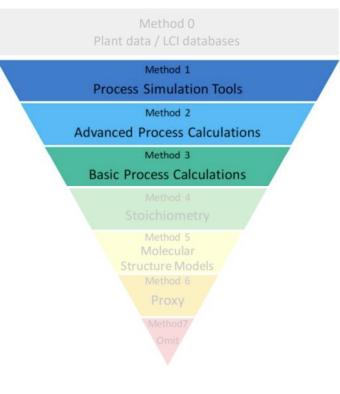

Method 4:

Basic and Stochiometric Calculations

- 1. eq. Aniline + 2 eq. MeOH \rightarrow Dimethylaniline
- Consult literature for routes (Ullmann, patents, Best Available Technqiue)
- Add "Gendorf Approach"
 - 2.2 MJ 论 , 0.4 kWh 🗲 , 95% yield per kg produced chemical
 - Access starting material concerted to CO2
 - Water consumption and waste generic

Parvatker *et al.*, ACS Sus. Chem. & Eng. **2019**, 7(1).

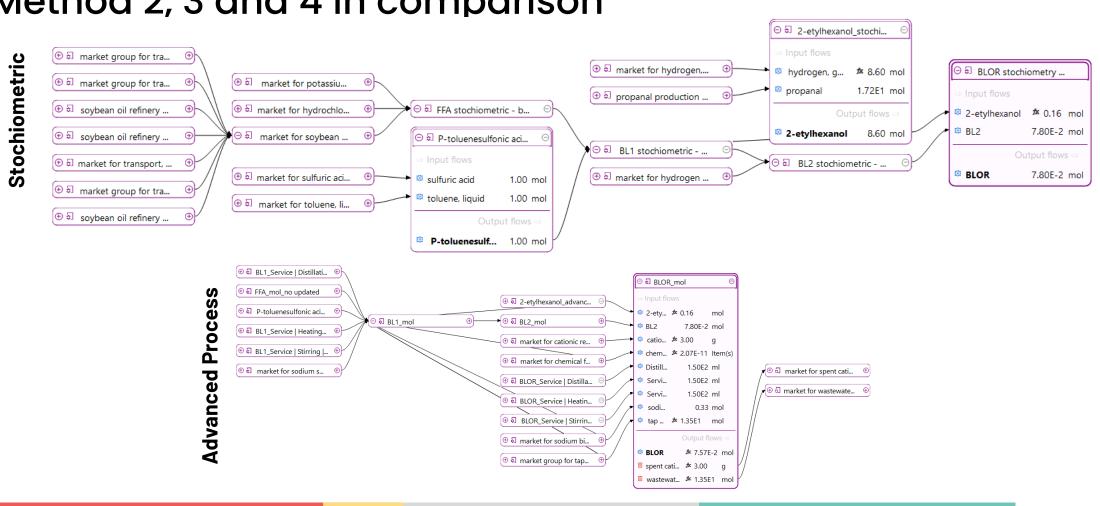
Gendorf Approach from: Hischier *et al.*, *Int. J. LCA*. **2005**, *10(1)*, 59 – 67.


Method 1 and 2, 3:

Method 1: Process Simulation Tools

- Uses software (e.g., Aspen Plus, DWSIM) to model reaction
- Ideal for non-commercial or novel chemicals

Method 2 and 3: Process Calculations


- Basic: Uses mass & energy balance equations and empirical rule:
- Basic: Assumes static operating conditions
- Adv.: Adds detail: equipment efficiency, heat loss, reactor design
- Adv.: More precise estimates of energy and emissions

Parvatker *et al.*, ACS Sus. Chem. & Eng. **2019**, 7(1).

Issues than can arrives

Method 2, 3 and 4 in comparison

Method 0

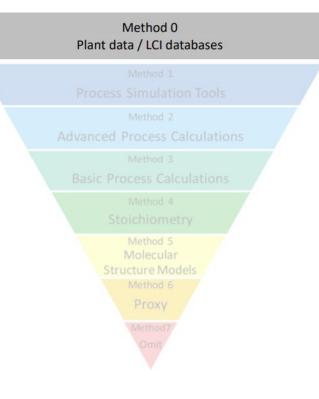
Omit

Issues than can arrives

Plant data / LCI databases Method 1 120% **Process Simulation Tools** Method 2 100% Advanced Process Calculations Method 3 80% **Basic Process Calculations** Method 4 60% Stoichiometry Method 5 40% Molecular Structure Models Method 6 20% Proxy Method7 0% Photo. oxid form: hum health Eutroph: frsh wat. Ecotox: frsh wat. Energy res: non-renew Hum. tox.: non carci. Hum. tox.: carci. Clim. Change Acid. Parvatker et al., ACS Sus. Chem. & Eng. 2019, 7(1). Stochio. Ecoinvent Stochio. **Basic Process Calculation** Adv. Process Calculation

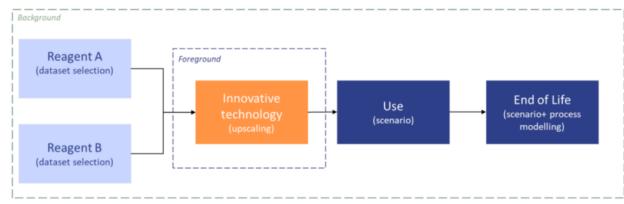
Method 2, 3 and 4 in comparison

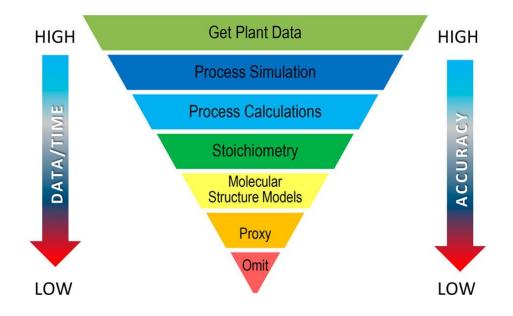
Method 0: Plant / LCI databases



LCI databases

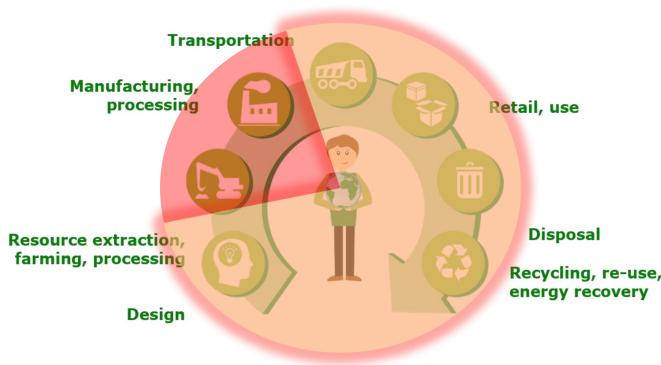
Plant/lit. data


https://plasticseurope.org/sustainability/circ ularity/life-cycle-thinking/eco-profiles-set/


Parvatker *et al.*, ACS Sus. Chem. & Eng. **2019**, 7(1).

Conclusion

- Background vs. Foreground
- Where to find data (System vs. Unit Processes)
- Depending on information level we can fill data gaps with different methods



Parvatker et al., ACS Sus. Chem. & Eng. 2019, 7(1).

Final Remarks

- We focused now on production
- However, use phase and EoL are also relevant but more complex to describe
- The full life cycle has to be tracked until the material is emitted to environment
 - Recyclability
 - Fate of materials
 - Biodegradability and persistency

Thanks

Dr. Jonas Hoffmann, LCA Consultant and Researcher

GreenDelta GmbH

GreenDelta

