орепьса

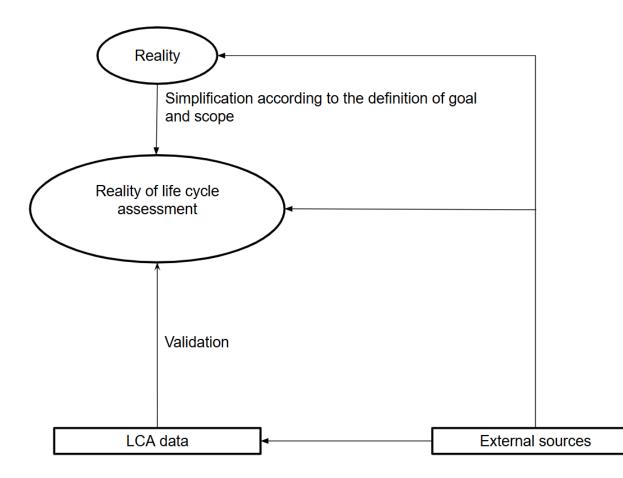
Greendelta

sustainability consulting + software

An approach for validating life cycle assessment data Lingjie Ji, GreenDelta GmbH openLCA.conf 2025, Berlin

Content

- What is reality?
- Approach
- Application of This Approach
- Outlook and Discussion

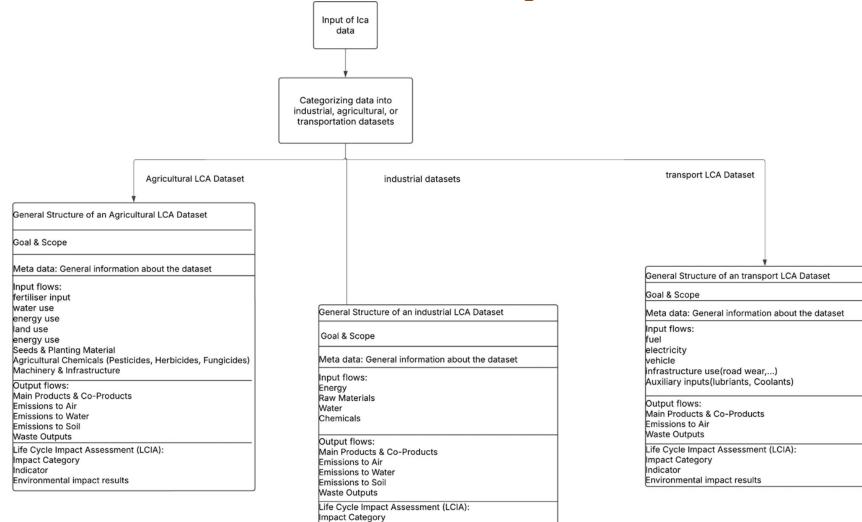

What is reality?

• Difference between reality and the concept of reality in relation to life cycle assessment data

Aspect	Reality	Reality in relation to life cycle assessment		
Definition	Actual state of processes, materials, and environmental impacts in the physical world	Simplified and reduced representation of reality for practical analysis		
Complexity	Fully complex, all variables and interactions	Systematically reduced variables, focus on key factors		
Measurability	Not fully measurable or predictable	Modeling and data estimation		
System boundaries	Infinitely complex	Defined and limited system boundaries		

What is reality?

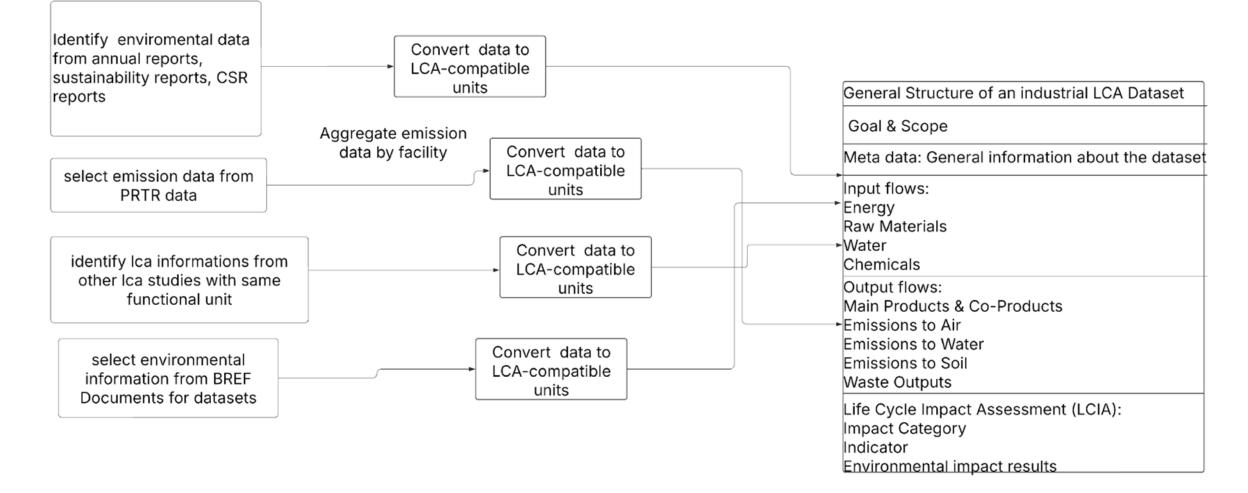
• Linking Reality, Life Cycle Assessment, and Data Validation


What is reality?

- Types of Deviations in Life Cycle Assessment (LCA)
 - qualitative deviations: environmental flows or processes are not accurately or fully captured
 - quantitative deviations: magnitude of input or output flows differs substantially from reality
 - mass imbalance is a specific form of quantitative deviation

- Sources for Validation
 - Archetypal Process Structures
 - typical configuration of input and output flows
 - Empirical and Field Data
 - Direct Measurements
 - Satellite Imagery
 - Industry Reports and Case Studies
 - Corporate Sustainability Reports (CSRs)
 - LCA studies
 - Scientific Literature
 - BAT documents
 - Industry-Specific Data Sources
 - Agriculture: FAOSTAT
 - Transport: TREMOD (Transport Emission Model)

- 1. Assign the dataset to a category (e.g., agricultural, industrial, or transport)
- 2. Clarify Goal and Scope of the Dataset
- 3. Identify Qualitative Deviations using Archetypal Process Structures
- 4. Identify Quantitative Deviations
 - e.g., mass balance or energy balance calculations
 - Convert external Data into LCA compatible data
 - Comparison of data with other external sources
- 5. Generate a Validation Score


• LCA datasets can be classified into various categories

Indicator

Environmental impact results

• For Industrial LCA datasets:

10

• For agricultural LCA datasets:

- Use case for 1 kg of apple production: get datasets from an AI model
- Identify external sources.
 - Types of Sources Used for this case:
 - Archetypal Process Structures
 - FAOSTAT
 - Country-level pesticide, fertilizer, land use and water use data.
 - Converted by dividing national totals by crop production volumes
 - LCA Studies
 - Detailed LCI values from apple production studies
 - Satellite Data
 - precipitation and evapotranspiration, and data from remote sensoring
 - Used to estimate irrigation requirements.
 - Literature Ranges
 - Minimum and maximum values reported across crops/regions

Planting			Fertilisation			Pollination		
Input	Amount	Unit	Input	Amount	Unit	Input Flow	Amount I	Jnit
electricity	100	kWh/a	Fertilizer	10	okg	Electricity	42	‹Wh
water for irrigation	500	m³/a	Electricity	0.25	, kWh	Water for Irrigation	50 l	_/h
fertiliser	50	kg N/a	Heat energy	0.01	1 MJ	Heat Energy	0.1	N
pesticide	20	L/a	Water for irrigation	10	L	Pesticide (insecticide/fungicide)	10	./w
heat	100	MJ/a	Fuel oil or diesel (for tractor)	0.1	1 L	Fertiliser	50 l	(g/
seeds	1000	kg/a	Output Flow	Amount	Unit	Pollinator Attractants (e.g. sugar, water)	20	./w
Output Flow	Amount	Unit	Carbon dioxide emissions	0.1	ıkg /h	Seeds or Propagation Materials	10001	units/m
CO2 emissions from transportation	5	tons/a	Nitrogen oxide emissions	0.01	1 kg /h	Output Flow	Amount I	Jnit
NOx emissions from machinery	1	ton/a	Fertilizer runoff into water	10	L/a	Carbon dioxide emissions (CO2)	1.5	(g/w
Water pollution from fertiliser use	500	m³/a	Soil disturbance emissions	5	skg/h	Nitrogen oxide emissions (NOx)		cg/w
Soil contamination from pesticide use	-	L/a	Fuel combustion byproducts		, g kg/h	Particulate matter emissions (PM)		cg/w
Heat emissions from equipment operation	50	MJ/a	Pest management			Water pollution (e.g., chemical runoff)		./w
Solid waste from machinery maintenance	-	kg/a	Input	Amount	Unit	Soil contamination (e.g., heavy metals)	51	(g/m
Scrap materials from equipment disposal		kg/a	Electricity		, kWh	Wastewater (e.g., irrigation water, cooling systems)	50	-
Pruning		0	Heat energy	0.05		harvesting		
Input Flow	Amount	Unit	Pesticide (insecticide/fungicide)		, ; L	0	Amount I	Jnit
Electricity	12	kWh/a	Water for pesticide application	50		Fruit Picker		apples/h
Heat energy	0	MJ/a	Fuel oil or diesel (for sprayer and fogger)	0.2		Harvesting Machine		apples/h
Tractor fuel	12	L/a	Air Blower	100	om³/h	Sorting Machine		apples/h
Chainsaw oil	0.4	L/a	Output	Amount	Unit	Packaging Machine		oxes/h
Water for irrigation	-	m³/a	Carbon dioxide emissions (CO2)		; kg	Drying Tunnel	-	apples/h
Pesticides (e.g. insecticides, fungicides)		L/a	Methane emissions (CH4)	0.01		Electricity		 ‹Wh/day
Fertilisers (e.g. nitrogen, phosphorus)		kg/a	Nitrogen oxide emissions (NOx)	0.005		Water for Irrigation	-	m ³ /w
Herbicides		L/a	Ammonia emissions (NH3)	0.001	-	Fertiliser	20	(g/
Fungicides		L/a	Water pollution (wastewater)	50	-	Pesticide		cg/a
Seeds	100-200	seeds/a	Soil contamination (heavy metals)	0.01		Heating System		(Wh/a
Area (occupation)	1	h/a				Transport Services (Truck)	1000	
Output Flow	Amount	Unit				Output Flow	Amount I	Jnit
Carbon dioxide emissions	1.2	kg CO2e/a				CO2 Emissions from Electricity Generation	0.02	kg CO2/h
Nitrogen oxide emissions	0.05	kg NOx/a				Methane Emissions from Fertiliser Application	0.001	kg CH4/
Particulate matter emissions		μ g/m³/a				Nitrogen Oxides Emissions from Tractor Emissions	0.0005	kg NOx/day m ³
Water pollution (wastewater)	o	m³/a				Water Pollutants from Wastewater Treatment	16	wastewat er/day
Soil erosion	1.2	m²/a				Scrap Materials from Packaging	ו 0.5ו	
Scrap materials (wood chips, branches)	10	m³/a				Nitrogen Leachate from Soil	endelor	cg N/ha/a
Wastewater treatment chemicals	0.5	kg/a				Air Pollutants from Drying Tunnel Emissions	0.01	‹ g/h

Identifying qualitative deviations: a typical archetypal structure for perennial fruit crop systems (like apple orchards) includes:

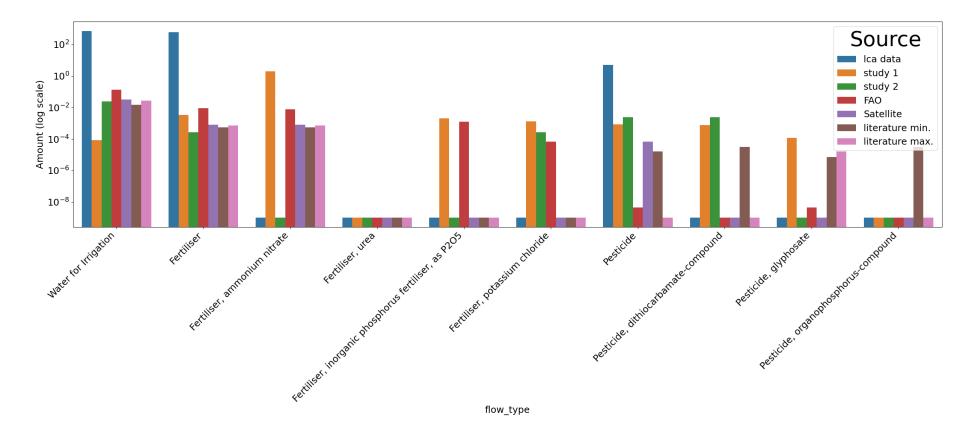
Expected Inputs	Expected Outputs,Main product: apples (kg/a)
Water for irrigation	
-	Co-products: biomass waste (prunings, leaves)
Fertilizers (N, P, K)	
	Emissions to air: CO_2 , CH_4 , N_2O , NO_x , particulates
Pesticides, fungicides, herbicides	
	Emissions to soil: nutrient leaching, pesticide residues
Energy inputs: electricity, fuel	
	Emissions to water: runoff, erosion losses
Seeds or planting stock	
	Solid waste: packaging, machinery maintenance waste
Machinery use and possible maintenance	
Land use and occupation	
-	

Key missing or incomplete flows identified:

- N₂O emissions from nitrogen fertiliser use not included
- Land occupation/use is limited to one stage
- Fate of biomass not modeled

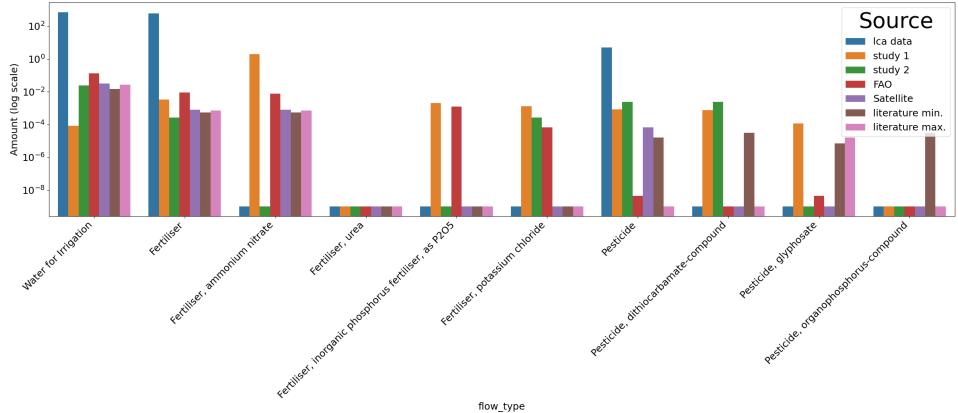
• Identifying quantitative deviations: Mass balance of this dataset:

Process	Total Mass Input (kg/year)	Total Mass Output (kg/year)	Mass Imbalance (kg/year)	Relative Mass Imbalance
Planting	5.01E+05	5.06E+05	5.10E+03	1.02%
Pruning	1.04E+01	5.00E+03	4.99E+03	48086.22%
Fertilisation	2.01E+01	2.52E+01	5.07E+00	25.24%
Pest Management	5.44E+01	5.50E+01	6.09E-01	1.12%
Pollination	4.38E+05	4.39E+05	7.83E+02	0.18%
Harvesting	3.94E+07	3.99E+07	5.63E+05	1.43%

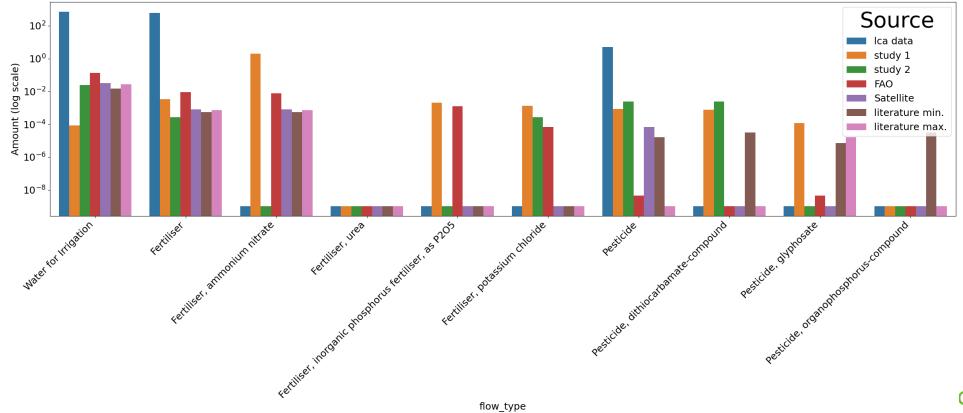

• Pruning and fertilization show a high imbalance

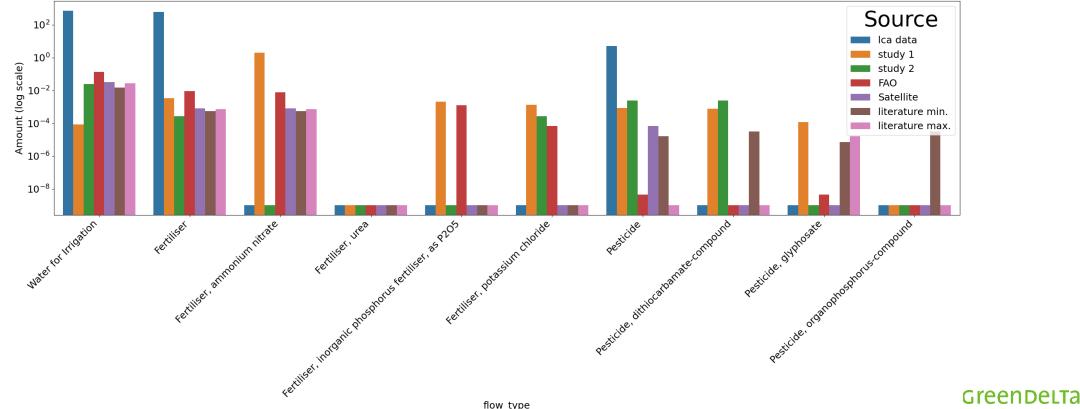
- LCA-Compatible Data from Other Sources: Using Remote Sensing for LCA-Compatible Irrigation Data
- Satellite platforms (e.g., FAO WaPOR) provides data on evapotranspiration (ET) and precipitation.
- Soil parameters like Relative Soil Moisture (RSM) and Available Water Content (AWC) are extracted from the Harmonized World Soil Database.
 - Irrigation Amount (mm) = Evapotranspiration (mm) Effective Precipitation (mm) Soil Moisture storage
 - Soil Moisture Storage = Relative Soil Moisture * Available Water Content

Parameter	Value	Unit
Evapotranspiration (ET)	436.4	mm/year
Precipitation	278.1	mm/year
Relative Soil Moisture (RSM)	0.39	%
Available Water Content (AWC)	159	mm
Soil Moisture Storage	0.6201	mm
Irrigation Area	0.02979	m ²
Calculated Irrigation Depth	157.68	mm/year
Irrigation Volume	0.0047	m³/year


Identifying Quantitative deviations: Comparison of Ica data across different sources

- Al-generated (LCA) values are significantly higher than other sources for:
 - Water for irrigation, Total fertilizer, Pesticides




- **LCA Studies:**
 - provide data that is already structured according to LCA methodology
 - fall within literature min/max ranges.

- **FAOSTAT:**
 - Some values are unexpectedly high or low: likely based on country-level averages divided across crop volumes

- Satellite: shows consistency in water and pesticide use with other sources
- Literature Ranges (Min/Max) provide the widest spread, capturing extremes across regions types.

Outlook and Discussion

- Reliability of external sources should be considered.
- Expand validation framework to other crops and systems to generalize this approach.
- Deviation Reporting: Quantify and visualize deviations, highlight suspicious flows, or suggest corrections

Greendelta

sustainability consulting + software

