

Novel metal organic framework adsorbents for efficient storage of hydrogen

EXEMPLARY APPROACH BASED ON METAL-ORGANIC FRAMEWORKS

CONRAD SPINDLER OPENLCA CONFERENCE 15.04.2024

METAL-ORGANIC-FRAMEWORK (MOF)

• "Lego"-structure with well-defined pores

• MOFs can store hydrogen with high capacities

• Only physical adsorption without chemical reaction

Funded by

the European Union

Funded by

MODELLING MISSING CHEMICALS AND SYNTHESIS

15.04.2024

MODELLING MISSING CHEMICALS AND SYNTHESIS

MOLECULAR STRUCTURE MODELS

- FineChem Tool as the most prominent molecular structure model [1]
- Be careful with the limits and the uncertainty from the models

• FineChem2 from ETH Zurich is on the way to be published [2]

[1] G. Wernet et. al., *Green Chemistry* **2009**, 11 (1826).
[2] D. Zhang et. al., *ACS Sustainable Chem. Eng.* **2024**, 12 (2007).

MODELLING STOICHIOMETRY IN OPENLCA

- Example for MOFs is the production of metals salts = metal + acid
- Always good practice to parametrize models in openLCA
- 1. Add chemical equation with stoichiometric molecular masses
- 2. Add proxy for energy (often 2 MJ heat and 0.33 kWh electricity used)
- 3. Add proxy for yield (often 95 % is used)
- 4. Add proxy for factory (often 4E-10 items is used)

MODELLING STOICHIOMETRY IN OPENLCA

Inputs			
Flow	Amount	Unit	Description
🕸 chemical factory, organics	4.00000E-10	🛄 ltem(s)	General proxy
🔯 electricity, medium voltage	0.33000	📟 kWh	General proxy
🏟 heat, district or industrial, natural gas	2.00000	📖 MJ	General proxy
anitric acid, without water, in 50% solution state	2 * mol_HNO3	📖 kg	Chemical synthesis standard reaction equation
🏟 soda ash, dense	1 * mol_Na2CO3	📖 kg	Chemical synthesis standard reaction equation
🕸 water, deionised	2 * mol_HNO3	📟 kg	Chemical synthesis standard reaction equation
Outputs			
Flow	Amount	Unit	Description
🔯 sodium nitrate	2 * mol_NaNO3	📖 kg	Chemical synthesis standard reaction equatio
🔟 wastewater, average	1 * mol_H2O	🛄 m3	Chemical synthesis standard reaction equation
Carbon dioxide, fossil	1 * mol CO2	m ka	Chemical synthesis standard reaction equation

- "Water, deionised" added with same amount as the acid (50% solution)
- The amount could be added to the wastewater to keep mass balance
- Waste heat sometimes added to the output to keep energy balance
- Small proxy residues of 0.2% input material could be added to the output
- Yield in this example is 100%

Input parame	ters	
Name ^	Value	Description
Mol_CO2	0.044	kg / mol
Mol_H2O	1.8E-5	m3 / mol
Mol_HNO3	0.063	kg / mol
Mol_Na2CO3	0.106	kg / mol
Mol_NaNO3	0.085	kg / mol

MODELLING STOICHIOMETRY IN OPENLCA

EF 3.1 Single score comparison for sodium nitrate

MODELLING PROCESS CALCULATIONS IN OPENLCA

MODELLING PROCESS CALCULATIONS IN OPENLCA

Parame	eters: Service H	eating	ß	Inputs/Outputs: Service Heatin	ng		
Global parameters			,	 Inputs 			
 Input pa 	arameters			Flow	Amount	Unit	
Name		Value Description		logical district or industrial, natural gas	energy	m j	Method 2
A k		4.4 power law amplitude (constant) 0.65 power law coefficient (constant) 2600.0 posting time [s]		• Outputs			Advanced Process Calculations
TO Tr		20.0 room temperature outside reactor [°C] 130.0 reactor temperature [°C]		Flow	Amount	Unit	Method 3 Basic Process Calculations
V		0.2 heating volume [m3]		23 Service Heating	V	es ma	Method 4 Stoichiometry
Depend	lent parameters						Method 5 Molecular
Name	Formula	Value Description					Structure Models Method 6
energy dT	A * V^k * t * dT Tr - T0	612092.9249235917 heating energy [J] 110.0 temperature difference (K)					Proxy
							incentou /

KEY TAKE AWAYS

System process

	aram merace production		
In	puts		
Na	me	Amount	Uni
>	🖉 Aluminium	0.00075	kg
>	Anhydrite	4.20137E-10	kg
>	Antimony	8.94323E-10	kg
>	🖉 Argon	4.54888E-5	kg
>	Ø Arsenic	3.82372E-8	kg
>	🖉 Barium	0.00062	kg
>	🖉 Basalt	0.00019	kg
>	🖉 Beryllium	0.00000	kg
>	🕢 Borax	6.07889E-11	kg
>	🖉 Boron	5.83011E-7	kg
>	Ø Bromine	1.12587E-8	kg
0	utputs		
Na	me	Amount	Un
>	1,1,1,2-Tetrafluoroethane	6.38007E-10	kg
>	1,1,1,2-Tetrafluoroethane	1.35178E-11	kg
>	1,1,1,2-Tetrafluoroethane	6.71778E-10	kg
>	1,1,1-Trichloroethane	9.27457E-21	kg
>	1,1,1-Trichloroethane	9.52946E-11	kg
>	(J) 1,1,1-Trichloroethane	1.65353E-12	kg
>	0 1,1,1-Trichloroethane	1.44289E-13	kg
>	1,1,1-Trifluoroethane	0.00000	kg
>	1,1,1-Trifluoroethane	0.00000	

Unit process

🕹 Inputs/Outputs: Sodium nitrate produc	ction	
✓ Inputs		
Flow	Amount	Unit
chemical factory, organics	4.00000E-10	🛄 Item(s)
🏟 electricity, medium voltage	0.33000	🛄 kWh
🕸 heat, district or industrial, natural gas	2.00000	📖 MJ
🏟 nitric acid, without water, in 50% solution state	0.12602	📟 kg
🔯 soda ash, dense	0.10599	📟 kg
🔯 water, deionised	0.12602	🛄 kg
✓ Outputs		
Flow	Amount	Unit
🕸 sodium nitrate	0.16999	📖 kg
🔟 wastewater, average	1.80153E-5	🛄 m3
📿 Carbon dioxide, fossil	0.04401	📖 kg

Unit process + model method

Inputs		
Flow	Amount	Unit
🕸 chemical factory, organics	4.00000E-10	💷 ltem(s)
🔯 electricity, medium voltage	0.33000	📟 kWh
🔯 heat, district or industrial, natural gas	2.00000	📟 MJ
🔯 nitric acid, without water, in 50% solution state	2 * mol_HNO3	
🔯 soda ash, dense	1 * mol_Na2CO3	🛄 kg
🔯 water, deionised	2 * mol_HNO3	📟 kg
Outputs		
Flow	Amount	Unit
🕸 sodium nitrate	2 * mol_NaNO3	📖 kg
🔟 wastewater, average	1 * mol_H2O	📟 m3

Depend	ent parameters		
Name	Formula	Value	Description
energy	A * V^k * t * dT	612092.9249235917	heating energy [J]
dT	Tr - T0	110.0	temperature difference (K)

5.63429E-11 kg

1.05391E-10 kg

> Ø 1,1,2-Trichloro-1,2,2-trifluoroethane

> Ø 1,1,2-Trichloro-1,2,2-trifluoroethane

THANK YOU FOR YOUR ATTENTION

GreenDelta GmbH

Funded by

the European Union

Dr. Conrad Spindler

2

Q

Alt-Moabit 130

DE-10557 Berlin, Germany

spindler@greendelta.com

greendelta.com

in

linkedin.com /company/greendelta-gmbh (12

15.04.2024

PROJECT OBJECTIVES

PROJECT PARTNERS

