

Life Cycle Sustainability Assessment of Industrialized Renovation Solutions

Friedrich Halstenberg, GreenDelta openLCA.conf, Berlin

INFINITE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **958397**

Industrialized retrofit

- The challenge:

- Buildings and construction account for 36% of final energy use and 39% of process and energy-related carbon dioxide emissions (UN)
- At least 3% of the building stock has to be renovated each year in order to mitigate the
 effects of climate change on our cities and reach the decarbonisation targets for 2050 (EU)

- Traditional retrofits:

- Assembly and installation predominantly on-site
- are the norm
- do not capture economies of scale well

- Industrialized retrofits:

- Industrialized component assembly off-site
- Quick installation on-site
- industrialization and mass customization can take retrofits to scale

Industrialised Envelope Technologies

INFINITE – ITALIAN DEMO

Retrofit Idea

Facade

Rubner

façade

New roof

INFINITE – ITALIAN DEMO

INFINITE results – Global Warming Potential

Global Warming Potential of renovation solutions

50 years

Scale up of INFINITE results over time

- A central benefit is the elevated speed of industrialized renovation compared to traditional renovation
- These benefits only become visible over time
- Assumptions for scenario:
 - Current renovation rate (traditional): 1% ¹
 - Industrial renovation rate: 2% (based on data from INFINITE project)
 - Building stock in EU: 220 million buidings ¹

INFINITE results scale up over time

Scenarios

t CO2 eq./decade

LCSA Research questions

- What are the environmental, social and economic hotspots in industrial renovation?
- How does the reusability of these elements affect the products sustainability?

Design for dissassembly in building facades

- Design for Assembly/Disassembly method by Nobatek applied to building facades
- Main improvements:
 - modular and standardized components
 - Minimal integrated parts/compounds
 - Use of reversible connections (mechanical fasteners, dry-jointing systems)
 - Choosing materials that are easily separable and recyclable (wood, glass)

Methodology

- Primary data collection of foreground system with first hand data
- **Background processes** were modelled with **Assumptions** were discussed with above mentioned partners

Environmental LCA	Social LCA	Life cycle Costing (LCC)
 Software: openLCA 2.0 Database: ecoinvent 3.8 cut-off Method: EF method v.3 	Software: openLCA 2.0 Database: PSILCA 3 Method: Social Impacts Weighting Method	Software: eurac tool

LCSA – life cycle hotspot analysis

Selected indicators: GWP (kg CO2 eq.), LC-cost ($\overline{\epsilon}$ /sqm), risk of fatal accidents (medium risk hours)

Comparison of shares of reusable components

25%

50%

100%

Comparison of reduction rates

Scenario	Ecological reduction rate	Economic reduction rate	Social reduction rate
Recycling rate = 25%	4.80%	9.67%	11.77%
Recycling rate = 50%	15.64%	19.35%	23.55%
Recycling rate = 100%	37.33%	38.70%	47.10%

Conclusions

- Regarding the industrialized building sector:

- Industrialized building renovation solution are very useful for the improvement of all dimensions of sustainability
- Impacts of the life cycle phases on the impacts are similar for the three dimensions of sustainability
- The percentage of risks of fatal accidents is comparatively high in production and installation
- Reusable facades are very useful to improve the facades sustainability, especially for social impacts

Regarding (open)LCA data:

- Better data for industrialized renovation needs to be gatheres. It is questionable if the used data from traditional manufacturing is transferable to industrialized building renovation

Thank you!

Friedrich Halstenberg, *GreenDelta* <u>halstenberg@greendelta.com</u>

INFINITE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958397