Greendelta

sustainability consulting + software

Elementary litter in life cycle inventories, approach and application

Dr. Andreas Ciroth, Naomi Kouame September 2, 2019

LCM 2019, Poznan

Content

- the obvious problem of plastic littering, ignored by LCA so far
- a model to include plastic littering in LCA
- application for ecoinvent 3.5, and some example calculations
- next steps, some existing limitations
- conclusions

the obvious problem of plastic littering

Distribution of litter types in different realms (1,036 publications)

Tekman, M.B., Gutow, L., Macario, A., Haas, A., Walter, A., Bergmann, M.: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, https://litterbase.awi.de/litter

Distribution of litter type sizes in the Mediterranean sea

Cózar, Andrés & Sanz-Martín, Marina & Marti, Elisa & González-Gordillo, Juan & Úbeda, Bárbara & Á Gálvez, José & Irigoien, Xabier & Duarte, Carlos. (2015). Plastic Accumulation in the Mediterranean Sea.

Distribution of brake wear type sizes

Table 1 Overview of literature studies investigating the mass distribution of airborne brake wear particles

Reference Type of study Brake pads tested Method Mass size distribution

Cha et al. 1983	Brake dynamometer Asbestos Unimodal (21-3.3 µm)
Garg et al. 2000	Brake dynamometer Semimetallic and NAO MOUDI (>0.1 µm) Unimodal (0.1-1.0 µm)
Sanders et al 2003	Brake dynamometer Low metallic, semimetallic and NAO MOUDI-ELPI Unimodal (4-5 µm)
von Uexküll et al. 2005	Brake dynamometer Disc and drum (trucks) Optical particle counter (>0.3 µm) Unimodal (2-3 µm)
Iijima et al. 2007	Brake dynamometer NAO APS (>0.5 µm) Unimodal (3-6 µm)
Iijima et al. 2008	Brake dynamometer NAO APS (>0.5 µm) Unimodal (2.0 µm)
Kukutschová et al. 2011	Brake dynamometer Low metallic APS-SMPS-BLPI Unimodal (2-4 µm)
Harrison et al. 2012	On-road measurement Roadside PM MOUDI Unimodal (2-3 µm)
Kwak et al. 2013	On-road measurement Roadside PM APS (>0.5 µm) Unimodal (1-10 µm)

Grigoratos, Theodoros & Martini, Giorgio. (2014). Brake wear particle emissions: a review. Environmental science and pollution research international. 22. 10.1007/s11356-014-3696-8.

Life Cycle Assessment (LCA)

LCA is often characterised as providing a "full picture", a comprehensive overview of environmental performance

 $http://www.saint-gobain-facade-glass.com/sites/default/files/green_buildings/LCA\%20leaflet\%20Saint-Gobain\%20Glass\%20English.pdf$

Life Cycle Assessment (LCA)

LCA is often characterised as providing a "full picture", a comprehensive overview of environmental performance

..and yet still, things like littering and plastic litter especially are ignored in LCA.

a model to include plastic littering in LCA

\rightarrow Including occurring plastic litter in an LCA model, basic ideas

- 1. Plastic littering occurs due to events, these happen with a given probability
- The probability depends on the process and on the flow (and maybe other things)
- The result is a plastic elementary flow released to nature (that however eventually can be picked up afterwards)

A framework: linking events in LCA inventory

An example LCA unit process: transport, passenger car, large size, diesel, EURO 3

INPUT	Amount	Unit
diesel, low-sulfur	0.07624796	kg
passenger car maintenance	1.08E-05	ltem(s)
passenger car, diesel	0.01333333	kg
OUTPUT	Amount	Unit
transport, passenger car, large size, diesel, EURO 3	1	km
Carbon dioxide, fossil	0.23941859	kg
Nitrogen oxides	8.04E-04	kg
Carbon monoxide, fossil	7.93E-05	kg
Particulates, < 2.5 um	3.88E-05	kg
NMVOC, non-methane volatile organic compounds, unspecified origin	1.91E-05	kg

A framework: linking events in LCA inventory

An example LCA unit process:

transport, passenger car, large size, diesel, EURO 3, with accident

INPUT	Amount	Unit
diesel, low-sulfur	0.07624796	kg
passenger car maintenance	1.08E-05	Item(s)
passenger car, diesel	0.01333333	kg
accident with injury	0.4*1e-6	Events*
OUTPUT	Amount	Unit
OUTPUT transport, passenger car, large size, diesel, EURO 3	Amount 1	<mark>Unit</mark> km
OUTPUT transport, passenger car, large size, diesel, EURO 3 Carbon dioxide, fossil	Amount 1 0.23941859	Unit km kg
OUTPUT transport, passenger car, large size, diesel, EURO 3 Carbon dioxide, fossil Nitrogen oxides	Amount 1 0.23941859 8.04E-04	Unit km kg kg
OUTPUT transport, passenger car, large size, diesel, EURO 3 Carbon dioxide, fossil Nitrogen oxides Carbon monoxide, fossil	Amount 1 0.23941859 8.04E-04 7.93E-05	Unit km kg kg kg
OUTPUT transport, passenger car, large size, diesel, EURO 3 Carbon dioxide, fossil Nitrogen oxides Carbon monoxide, fossil Particulates, < 2.5 um	Amount 1 0.23941859 8.04E-04 7.93E-05 3.88E-05	Unit km kg kg kg kg

*This is the value for Germany, for 2017, https://www.bast.de/BASt_2017/EN/Publications/Media/Trafficand-Accident-Data.pdf?__blob=publicationFile&v=7

A framework: distinction of littering events, in processes

littering event probabilities, p	closed	open	
	examples	in airplane	streetfood
use	brushing teeth w. toothpaste w. microplastic		
unforeseen disposal	selling coffee in plastic cup		
accidents	transport, passenger car, EURO 3		

A framework: distinction of littering events, in processes

littering event probabilities, p	closed	open	
	examples	in airplane	streetfood
use	brushing teeth w. toothpaste w. microplastic	0.75*	1
unforeseen disposal	selling coffee in plastic cup	0.0001	0.1
accidents	transport, passenger car, EURO 3	0.001	1

*system is closed in principle but not for use: toothpaste use in airplane

A framework: Littering probabilities of flows

Flow-inherent plastic littering				
class	probability			
none	0			
very low	0.000001			
low	0.001			
medium	0.1			
high	0.5			
very high	0.95			

A framework: Littering probabilities of flows

Flow-inherent plastic littering					
class	probability	example			
none	0	electricity			
very low	0.000001	diesel generator			
low	0.001	waste paper, unsorted			
medium	0.1	used laptop computer			
high	0.5	polystyrene scrap, post-consumer			
very high	0.95	tyre wear emissions, lorry			

(for LCA nerds:

Table 10.3. Default basic uncertainty (variance σ_b^2 of the logtransformed data, i.e. the underlying normal distribution) applied to intermediate and elementary exchanges when no sampled data are available; c: combustion emissions; p: process emissions; a: agricultural emissions

input / output group	с	р	a	input / output group	c	р	а
demand of:				pollutants emitted to air:			
thermal energy, electricity, semi-finished prod- ucts, working material, waste treatment services	0.0006	0.0006	0.0006	CO ₂	0.0006	0.0006	
transport services (tkm)	0.12	0.12	0.12	SO ₂	0.0006		
Infrastructure	0.3	0.3	0.3	NMVOC total	0.04		
resources:				NO _X , N ₂ O	0.04		0.03
Primary energy carriers, metals, salts	0.0006	0.0006	0.0006	CH ₄ , NH ₃	0.04		800.0
Land use, occupation	0.04	0.04	0.002	Individual hydrocarbons	0.04	0.12	
Land use, transformation	0.12	0.12	0.008	PM>10	0.04	0.04	
pollutants emitted to water:				PM10	0.12	0.12	
BOD, COD, DOC, TOC, inorganic compounds (NH ₄ , PO ₄ , NO ₃ , Cl, Na etc.)		0.04		PM2.5	0.3	0.3	
Individual hydrocarbons, PAH		0.3		Polycyclic aromatic hydrocarbons (PAH)	0.3		
Heavy metals		0.65	0.09	CO, heavy metals	0.65		
Pesticides			0.04	Inorganic emissions, others		0.04	
NO ₃ , PO ₄			0.04	Radionuclides (e.g., Radon-222)		0.3	
pollutants emitted to soil:							
Oil, hydrocarbon total		0.04					
Heavy metals		0.04	0.04				
Pesticides			0.033				

Weidema, Bo & Bauer, Christian & Hischier, Roland. (2013). Data quality guideline for the ecoinvent database version 3. Overview and Methodology Ecoinvent. Report 1 St. Gallen: The Ecoinvent Centre, p 75

\rightarrow overall calculation:

amount of litter in process data set j per flow i=

litter probability flow i * litter probability process j * amount of flow i in process data set j

- (convert to mass where needed)
- processes can also be accidents (new process typically not existing in LCA databases)

total amount of litter for process j = sum of litter over all flows i of process j

application to ecoinvent 3.5 (cut-off)

Results for all exchanges in all flows in ecoinvent 3.5

Results for all processes, aggregated, in ecoinvent 3.5

litter amount [kg] total per process, ei3.5

Results for all processes, aggregated, in ecoinvent 3.5

litter amount [kg] total per process, ei3.5

road vehicle factory construction, 314,263.73 kg

Bus maintenance, CH, ecoinvent 3.5, results for litter (screenshot from openLCA)

Bus maintenance, CH, ecoinvent 3.5, results for litter (screenshot from openLCA)

Flow	😼 plastic parts, small - Waste	*				
O Impact category	$\ensuremath{\mathbbmm{I}\Xi}$ Acidification - CML-IA baseline	>				
O Cost category	\$¥ Added value	\sim	Don't show <	0	• %	Exclude zero ent

Contribution tree for locations

Location/Process		Amount Unit	
> 💡 Global - GLO	-	430.63938 kg	
> 🕈 Europe, without Russia and Turkey	1	62.56167 kg	
> 🛿 Rest-of-World - RoW	1	60.19042 kg	
> 🕈 Europe - RER	1	54.34336 kg	
> 🛿 Switzerland - CH	1	41.20216 kg	
		12.18906 kg	

existing limitations and next steps

Further refinement

(E.g.:)

• countries –

different littering characteristics not yet considered All the sector of the sector o

Africa Alaska Systems **Coordinating Council** Albania Algeria Aluminium producing area, EU27 and EFTA countries Angola Argentina Armenia Asia Australia Austria Azerbaijan Bahrain Bangladesh

Further refinement

(E.g.:)

- particle sizes not considered but quite some data available → input from impact model developers?
- the current values are worst case cleaning and "remediation" activities not considered – could be added

(these plastic litter parts are "borderline" elementary flows and can be recaptured from the technosphere)

Limitations

(E.g.:)

- cigarette butts: very relevant in litter that is found today but (somehow) a smoking truck driver for example is not part of typical LCA datasets
- we need probably a different, "human behaviour" modelling perspective to include some aspect of littering

Limitations

(E.g.:)

- cigarette butts: very relevant in litter that is found today but (somehow) a smoking truck driver for example is not part of typical LCA datasets
- we need probably a different, "human behaviour" modelling perspective to include some aspect of littering

conclusions

Conclusions

- an approach was presented to include plastic littering in LCA models
- the approach combines littering event probabilities with flow littering probabilities
- this could close a relevant "blind spot" in LCA
- an application to ecoinvent 3.5 shows so far reasonable results
- it will be refined and then released as add-on
- some aspects require probably a different, additional modelling from a human behaviour perspective (smoking truck driver)

Greendelta

sustainability consulting + software

Contact:

Dr. Andreas Ciroth GreenDelta GmbH Müllerstrasse 135, 13349 Berlin, Germany ciroth@greendelta.com www.greendelta.com