GreenDelta sustainability consulting + software

Influence diagrams and scoping for Life Cycle and Sustainability Assessment an example from sustainable mining Andreas Ciroth, Claudia Di Noi¹, Helena Wessman-Jääskeläinen² 'GreenDelta, ²VTT

Setac Rome, May 16, 2018

Influence diagrams and scoping for LCA and Sustainability Assessment

- 1. A motivation
- 2. Influence diagrams
- 3. Influence diagrams for life cycle sustainability assessment of a mining site and mining technology
- 4. How to use the diagrams, scoping
- 5. Status and outlook

1 A motivation

Why influence diagrams?

• LCA is an established, standardised, "science-based" approach for holistically assessing environmental and potentially other impacts over the life cycle of a product or service:

"LCA considers all attributes or aspects of natural environment, human health and resources. By considering all attributes and aspects within one study in a cross-media perspective, potential trade-offs can be identified and assessed. " ISO 14040 2006, 4.1.7, comprehensiveness

→ LCA is a very useful approach for understanding sustainability impacts of mining.

Why influence diagrams?

- However,
 - level of detail of the LCA set by goal and scope; expert knowledge, guessing, and study conditions are common for specifying goal and scope
 - LCA is a linear model -> feedback loops hard to detect (e.g.)
 - uncertainty, lack of knowledge prevail for some products: GMO, nanotech-products, mine-site products

Why influence diagrams?

- → LCA by design "does not see everything" (linear, typically deterministic model)
- → The extent can be further reduced by goal and scope settings
- → Influence diagrams, established before starting the LCA modelling, are a way to
 - → identify the toolset needed for a comprehensive understanding of a problem
 - → identify relevant and irrelevant aspects for a life cycle model

2 Influence diagrams

Influence diagrams, an introduction

Influence diagrams / causal loop diagrams are visual diagrams about a situation or issue, with longer tradition in modelling¹:

- variables are connected with arrows, showing relations between variables
- arrows have an indication of whether the relation is enforcing (+, more creates more) or the opposite (-, more creates less)
- qualitative modelling, unrestricted

¹ e.g. Bossel, H.: Modellbildung und Simulation, Kassel 1994

Influence diagrams, an introduction, 2 Effects of policy decisions on livelihood and water security, Pollard et al 2014

Pollard, S., H. Biggs, and D. R. Du Toit. 2014: A systemic framework for context-based decision making in natural resource management, Ecology and society 19(2): 63

Influence diagrams, an introduction, 3

Steps to create the diagram

- \circ identify the variables
- $\circ~$ identify the causes and relations
- add the direction of the cause, a '+' indicating increase, a '-' decrease
- $\circ~$ check that only direct relations are represented
- check that all other relations are frozen when one relation is considered
- clearly define the state and starting point for the diagram

3 Influence diagrams for life cycle sustainability assessment of a mining site & technology

Influence diagrams for mining

Iterams, EU H2020 project, 2017-2021, www.iterams.eu:

a new, innovative technology is proposed and tested which promises to reduce water input and output flows of a mine and produces "concrete-like" material from mining residues, to be used within the mine

Tested in mine sites, e.g. for copper, in Finland, Portugal, South Africa

 \rightarrow is this new technology more sustainable, over the life cycle?

Influence diagrams for mining: Iterams

Influence diagrams for mining: Iterams Inputs: water, land use, energy, materials -> link to life cycle

Influence diagrams for mining: Iterams Impacts on sustainability

Influence diagrams for mining: Iterams Other elements

Relations, and status variables

Influence diagrams for mining: Iterams Other elements

External variables

Influence diagrams for mining: Iterams Other elements

Risks

4 How to use the influence diagrams

How to use the diagrams

- Visualise and discuss relations
- Find hot spots and trade-offs
- Determine goal and scope for LCA (extended)

How to use the diagrams: hot spots and trade-offs

How to use the diagrams: hot spots and trade-offs

How to use the diagrams: hot spots and trade-offs

How to use the diagrams: goal and scope

Conclusions

Conclusions

- Influence / causal loop diagrams are a good way to show and "get into" the topic of an extended LCA study
- Easy to build, no method- or toolbased limitations
- Purposes
 - display relations
 - Identify hot spots and trade offs
 - structure and motivate goal and scope

Greendelta

sustainability consulting + software

Thank you!

Contact:

Dr. Andreas Ciroth GreenDelta GmbH Müllerstrasse 135, 13349 Berlin, Germany <u>ciroth@greendelta.com</u> www.greendelta.com