Greenbelta

sustainability consulting + software

The Importance of a Three-dimension Approach in LCA.

A Screening Study on Mining addressing Environmental, Social and Cost Aspects

Claudia Di Noi, Andreas Ciroth GreenDelta GmbH, Germany

ACLCA, LCA XVIII Conference, Fort Collins, CO, 26th September 18

The meaningfulness of a LCA screening study

- Prioritize efforts and resources -> key issues
- Better shape the G&S of the study -> sustainability hotspots

WHY?

- Burdens may be shifted from one dimension to another
- Indicators, impact categories and outcomes may be complementary, overlapping and/or contradictory

Integrated Mineral Technologies for more Sustainable Raw Material Supply

- H2020 issue "Sustainable selective low impact mining"
- 3 years: 1.6.2017 31.5.2020
- 7.9 M€ budget
- 16 partners

AngloAmerican Amphos Amphos

ITERAMS project

- Reduction of water consumption by >90%
- Water quality optimization for each process step
 - Recovery of valuable constituents from water solutions
 - Efficient and economical water treatment methods

TAILINGS VALORIZATION

- Geopolymerisation for water and oxygen tight covers on deposited tailings
- Waste rock and tailings as hardening mine fill or sold as products
- All remaining tailings safely deposited as a filter dry cake

MINIMIZATION OF ENVIRONMENTAL FOOTPRINT

- No effluents to environment
 - No fresh water intake
 - · No dam failures
 - · Area conserved
 - · Enhanced mining
- Enhanced tailings value

WATER

BOLIDEN

TAILINGS

ENVIRONMENT

Screening approach

Screening approach			
Areas	E-LCA Finland, Portugal, South Africa, Europe, Latin America	S-LCA Finland, Portugal	LCC Finland, Portugal, South Africa, Brazil, US, Europe, Latin America
Dp	ecoinvent, EXIOBASE	PSILCA	ecoinvent + literature research
LCIAM	ILCD 2011 Midpoint+, ReCiPe, Boulay et al. (2011), CML-IA baseline, EXIOBASE built-in LCIAM	Social impacts weighting method in PSILCA	Added value calculation, engineering principles
Process	ecoinvent-> copper mine operation, copper production, primary; EXIOBASE -> copper ores and concentrates	Metal ores	Mine construction, underground and open cast; copper mine operation; copper production, primary

The context of the mining activity

- Vulnerability of local communities, e.g. their dependence on local water reserves
- Availability and quality of water and mineral resources
- Conflicts with other industries
- Importance of mining for the local/national economy
- Risks on a national scale (not sector-specific)
- Steadiness of risks/impacts

Results: E-LCA screening

Copper production, primary, RER, ecoinvent

Normalization set "EU 27 ILCD Midpoint+, 2010"

Copper ores and concentrates, Finland, EXIOBASE

Impact localization: Water withdrawal - Manufacturing

Results: S-LCA screening

Metal ores, Finland, PSILCA

Metal ores, Portugal, PSILCA

Results: LCC screening

Copper mine operation, sulfide ore, RER, ecoinvent

LCC beyond databases

- 1. Cost Breakdown Structure
- Location factors
- 3. Cost indexes
- Scaling factors for equipment cost
- Sensitivity analysis for energy cost in different countries

OPERATING COST ESTIMATION (MINING IN US)

Results: summary and interpretation

E-LCA

- Hotspots:
 electricity and
 tailings
 management
- Toxicity categories
- Impacts are not globally widespread
- 4. Differences in location

S-LCA

- Importance of the supply chain (China, India)
- 2. Hotspots:
 machineries,
 chemicals and
 basic metals
 manufacturing
- Local communities
- 4. Potential opportunities (employment, fair salary)

LCC

- Hotspots: energy and tailings and waste rock handling
- Costs vary by region and country
- 3. Costs are influenced by the scale of the mine and type of ore
- 4. Difficult to collect data

Complementarity, overlapping and tradeoffs

Where are the limitations

- Data quality (old data, technical conformance)
- Different data sources (gaps, assumptions, harmonization)
- Background data should always be related to the context
- The LCA screening results should be complemented with other tools, e.g. literature, causal loop diagram

Impact results, data quality - Metal ores, Finland, PSILCA

Conclusions and further development

- Valuable inputs to the project
- Environmental and cost impacts end up in impacts on social stakeholders
- The social dimension is the most difficult to measure
- If one or two dimensions had been excluded, an incomplete picture of the impacts would have been provided
- Dialogue among the project partners

References

- ITERAMS: Integrated Mineral Technologies for More Sustainable Raw Material Supply, Accessed 16.08.2018, http://www.iterams.eu/
- Kinnunen, P., Raatikainen, J., Emler, R., Guignot, S., Ciroth, A., Guimerà, J., Paajanen, P., Heiskanen, K.Towards closed water loops, ore sorting and tailings valorization for more sustainable raw material supply. Presentation in Sustainable Minerals 2018.
- Ecological statuts of surface water in Portugal, slide 6. Available at: https://snirh.apambiente.pt/index.php?idMain=1&idItem=1.5. Last accessed: 15.08.18
- Ecological status of surface waters in Finland, slide 6. Available at:
 http://www.ymparisto.fi/en-US/Waters/State of the surface waters. Last accessed: 15.08.18
- Mancini L., Sala, S. (2018) Social impact assessment in the mining sector: Review and comparison of indicators frameworks, Resources Policy 57 (2018) 98–111
- Eisfeldt, F., December 2017, PSILCA A Product Social Impact Life Cycle Assessment database. Documentation, Accessed 13.12.2017, online available at http://www.openlca.org/wp-content/uploads/2017/12/PSILCA documentation update PSILCA v2 final.pdf
- ILO (2017) Quick guide on sources and uses of labour statistics. Geneva, Switzerland. ISBN: 978-92-2-130119-6

Thank you!

Greendelta

sustainability consulting + software

Contact
Claudia Di Noi
GreenDelta GmbH
Müllerstrasse 135, 13349 Berlin
dinoi@greendelta.com
www.greendelta.com