Greenbelta

sustainability consulting + software

A new LCI database for India

Andreas Ciroth, Michael Srocka, Salwa Burhan + 4
GreenDelta GmbH

ILCM Mumbai, October 5, 2018

f2

A new LCI database for India

- Motivation & context
- 2. Principles of the LCA data machine
- 3. (towards) an Indian LCI database
- 4. Status and outlook

1 A motivation, context

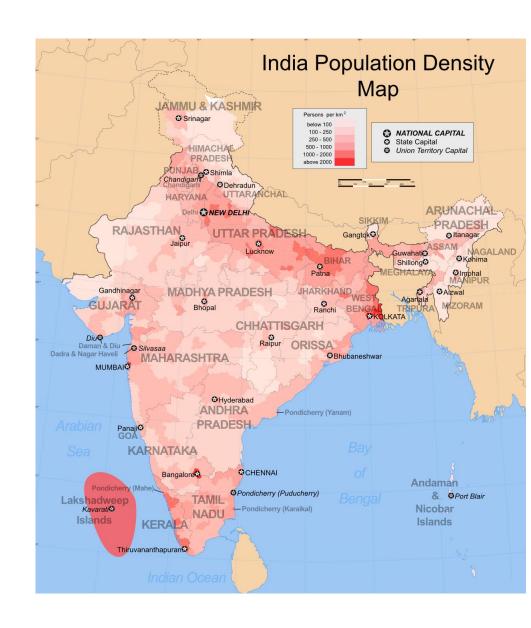
A motivation

(this is probably the easiest part of the entire presentation)

- LCA studies are data intense, modern studies integrate life cycles that cover > 10,000 individual process data sets
- Data collection and modelling is done manually, integrating expert judgement and many other sources, which is a lot of effort, error-prone, and difficult for quality assurance

A motivation

Data collection and modelling is a bottleneck for LCA


- Missing information
- Use of outdated information
- Use of incorrect information without being aware

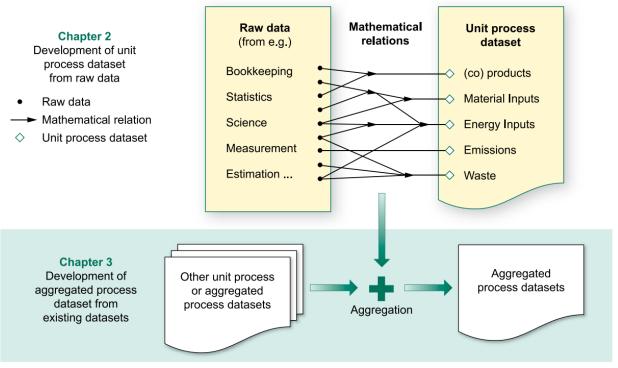
→ Is there not another way to obtain LCA data?

The LCA data machine (LCADM)

- A system to create data sets for LCA, automatically and fast, demand-driven, with controlled fitness for purpose
- Currently developed at GreenDelta
- German research project
 "Entwicklung eines autodidaktischen Data Mining
 Algorithmus mit hierarchischen temporalen Speicher
 (HTM) zur Interpolierung des [...] Footprints von
 Produkten", 2016-10/2018

India

India & LCA


- Rising interest and recognition for LCA
- Production processes, climate, products different -> datasets from "elsewhere" not fully fitting
- Currently (and since some time) initiatives to develop datasets for India (e.g., ecoinvent, GaBi), ...
- ...using the approaches that were successful 20 years ago in Europe (e.g.), ...
- which are admittedly slow and require lot of effort

India & LCA

- Rising interest and recognition for LCA
- Production processes, climate, products different -> datasets from "elsewhere" not fully fitting
- Currently (and since some time) initiatives to develop datasets for India (e.g., ecoinvent, GaBi), ...
- ...using the approaches that were successful 20 years ago in Europe (e.g.), ...
- which are admittedly slow and require lot of effort
- → is there a chance for new approaches that are faster and cheaper (and maybe even better)

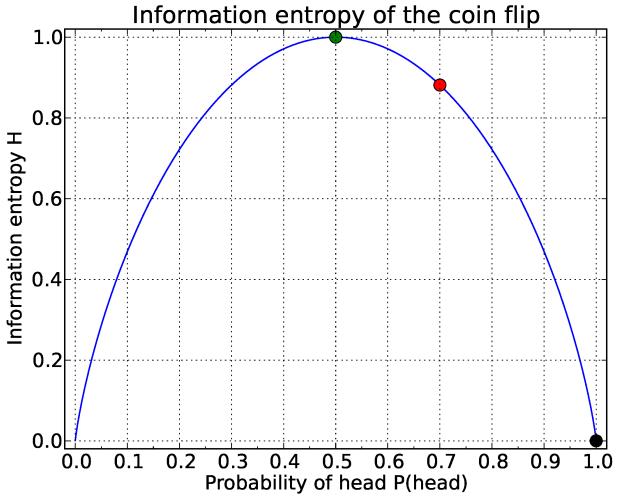
2 Principles of the LCA data machine

 LCA datasets are created from raw data, various sources are combined, mathematical relations applied

Wang Ciroth et al. 2011, p 54

 Shannon entropy is used to assess level of detail, information content for processes, in terms of absolute information content H(A) and information gain

$$H(A) = -\sum_{i=1}^{n} p_i * log_2 p_i$$


$$H(p|q) = -\sum_{i=1}^{n} p_i * log_2 \frac{p_i}{q_i}$$

 Shannon entropy is used to assess level of detail for processes, in terms of absolute information content H(A) and information gain

$$H(A) = -\sum_{i=1}^{n} p_i * log_2 p_i$$
 Information content

$$H(p|q) = -\sum_{i=1}^{n} p_i * log_2 \frac{p_i}{q_i}$$
 Information gain: p in addition to q

Shannon entropy, classic example: coin flip

Wellmann, J.F.: Information Theory for Correlation Analysis and Estimation of Uncertainty Reduction in Maps and Models, *Entropy* **2013**, *15*(4), 1464-1485

- Content conformance / data quality / fitness for purpose is used to measure the "quality" of the information
 - (i.e. how well does the product, time, geography, modelling aspects fit to what is needed)
- Can contradict Shannon entropy

Use of the UN GLAD metadata descriptors to describe fitness for purpose

default

comment

~ 30 different descriptors

field content

field format

refld:	String	The unique identifier of the data set *required	
name:	String	The name of the data set *required	
dataSetUrl:	String	A url to download the complete data set *required	
		The category of the data set. The value will be automatically build from the elements in the 'categories' field,	
		concatinated with a slash (/). e.g. categories = ['Emission to air', 'Unspecified'] => category = 'Emission to	
category:	String	air/Unspecified'	
description:	String	The description of the data set	
technology:	String	A description of the technology used in the data set	
format:	String	Enum: ECOSPOLD1, ECOSPOLD2, ILCD, JSON-LD, OTHER, UNKNOWN	
location:	String	The location of the data set	
dataprovider:	String	The name of the provider of the data set	
supported Nomen clatures:	String	The nomenclatures, the data set is compliant to	
IciaMethods:	[string]	A list of supported LCIA methods	
		(Internally) used to build a tree like category structure. This value will be automatically calculated from the	
		elements in the 'categories' field. e.g. categories = ['Emission to air', 'Unspecified'] => categoryPaths =	
categoryPaths:	[string]	['Emission to air', 'Emission to air/Unspecified']	
		(Internally) used to build a tree like structure for the unspsc code. This value will be automatically calculated	
		from the 'unspscCode' field. e.g. unspscCode = '50454302' => unspscPaths = ['50', '5045', '504543',	
unspscPaths:	[string]	'50454302']	
		(Internally) used to build a tree like structure for the co2pe code. This value will be automatically calculated	
co2pePaths:	[string]	from the 'co2peCode' field. e.g. co2peCode = '1.1.1' => co2pePaths = ['1', '1.1', '1.1.1']	
processType:	string	Enum: UNIT, PARTIALLY_AGGREGATED, FULLY_AGGREGATED, BRIDGE, UNKNOWN	Default: UNKNOWN
representativenessType:	string	Enum: SCIENTIFIC, EXPERT_BASED	Default: EXPERT_BASED
modelingType:	string	Enum: ATTRIBUTIONAL, CONSEQUENTIAL, UNKNOWN	Default: UNKNOWN
multifunctionalModeling:	string	Enum: PHYSICAL, ECONOMIC, CAUSAL, SYSTEM_EXPANSION, NONE, UNKNOWN, NOT_APPLICABLE	Default: NOT_APPLICABLE
biogenicCarbonModeling:	string	Enum: OMITTED, DISTINGUISHED, AGGREGATED, UNKNOWN, NOT_APPLICABLE	Default: NOT_APPLICABLE
		Enum: CUT_OFF, PHYSICAL_APOS, ECONOMIC_APOS, SUBSTITUTION, OTHER, UNKNOWN,	
endOfLifeModeling:	string	NOT_APPLICABLE	Default: NOT_APPLICABLE
waterModeling:	string	Enum: AMOUNTS, AMOUNTS_AND_AVAILABILITY, AMOUNTS_AND_QUALITY, UNKNOWN, NOT_APPLICABLE	Default: NOT APPLICABLE
waterivioueiiiig.	String	NOT_APPLICABLE	Delault. NOT_AFFLICABLE

Use of the UN GLAD metadata descriptors to describe fitness for purpose

~ 30 different descriptors

		Enum: INCLUDED_AND_DISTINGUISHED, INCLUDED_AND_NOT_VISIBLE, NOT_INCLUDED,
emissionModeling:	string	UNKNOWN, NOT_APPLICABLE
		Enum: INCLUDED_AND_DISTINGUISHED_CORRECTION, INCLUDED_AND_DISTINGUISHED_OTHER,
carbonStorageModeling:	string	INCLUDED_AND_NOT_VISIBLE, NOT_INCLUDED, UNKNOWN, NOT_APPLICABLE
		Enum: MEASURED_VERIFIED, PARTLY_MEASURED_VERIFIED,
sourceReliability:	string	PARTLY_MEASURED_PARTLY_ESTIMATED, ESTIMATED_QUALIFIED, ESTIMATED_UNQUALIFIED
aggregationType:	string	Enum: HORIZONTAL, VERTICAL, COMBINED, UNKNOWN, NOT_APPLICABLE
reviewType:	string	Enum: INTERNAL, EXTERNAL, PANEL, UNKNOWN, NONE
reviewSystem:	string	Enum: ILCD, PEF, GHG, LCA_UN, OTHER, UNKNOWN, NOT_APPLICABLE
unspscCode:	string	A UNSPSC process code categorizing the data set
co2peCode:	string	A CO2PE product code identifying the product of the data set
copyrightHolder:	string	The owner of the copyright of the data set if applicable
license:	string	The license the data set is released under
contact:	string	A contact person for infomation on the data set
categories:	[string]	The categories of the data set as array (one entry per child category)
reviewers:	[string]	A list of the names of the reviewers of the data set
validFrom:	integer (int64)	The start of the validity of the data set in milliseconds since 01/01/1970 (unix-time tims 1000)
validUntil:	integer (int64)	The end of the validity of the data set in milliseconds since 01/01/1970 (unix-time tims 1000)
validFromYear:	integer (int32)	The year of the start of the validity of the data set, will be taken from validFrom if not set
validUntilYear:	integer (int32)	The year of the end of the validity of the data set, will be taken from validUntil if not set
latitude:	number (double)	The latitude of the geography of the data set
longitude:	number (double)	The longitude of the geography of the data set
completeness:	number (double)	The percentage of flows according to nomenclature
amountDeviation:	number (double)	The deviation in mass and energy balance
representativeness Value:	number (double)	The percentage of variation coefficient, s/(arithm mean)
copyrightProtected:	boolean	Indicates if the data set is copyright protected

(long term

Default: NOT_APPLICABLE

Default: NOT_APPLICABLE

ESTIMATED_UNQUALIFIED Default: NOT APPLICABLE

Default: NOT_APPLICABLE

Default:

Default: NONE

Default: 100

Indicates if the data set is available for free

Indicates if the data set can be downloaded from the given dataSetUrl without further login

boolean

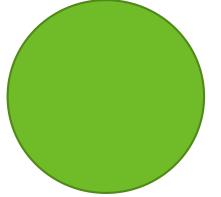
boolean

publiclyAccessible:

Use of the UN GLAD metadata descriptors to describe fitness for purpose

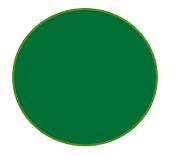
• ~ 30 different descriptors

validFrom: integer (int64)


validUntil: integer (int64)

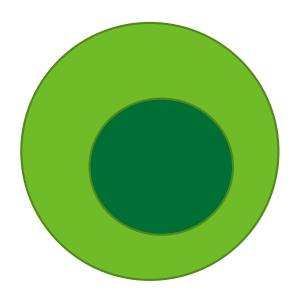
validFromYear: integer (int32)

validUntilYear: integer (int32)

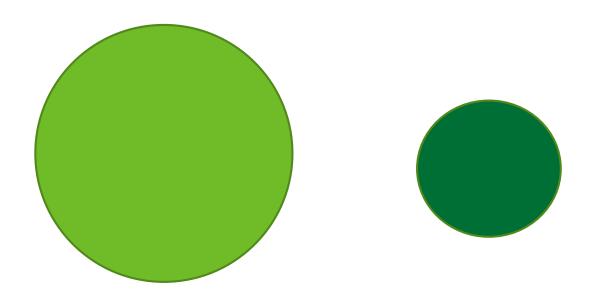

Shannon entropy vs fitness for purpose

Broader information, less specific, in scope (i.e. fit for purpose)

Data set older than 2016


More specific information

Data set from 2005


Shannon entropy vs fitness for purpose

Case 1: broader information in scope, more detailed information also in scope
 Shannon entropy →, fitness for purpose ७, improvement

Shannon entropy vs fitness for purpose

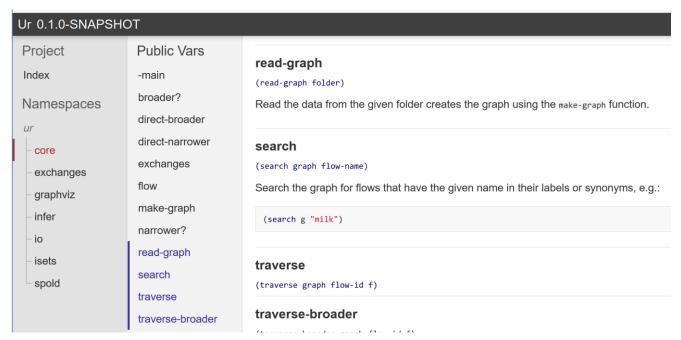
Case 2: broader information in scope, more detailed information not in scope
 Shannon entropy △, fitness for purpose ↓, degradation

The LCA data machine, Patterns and rules defined

Process types (12 different so far:

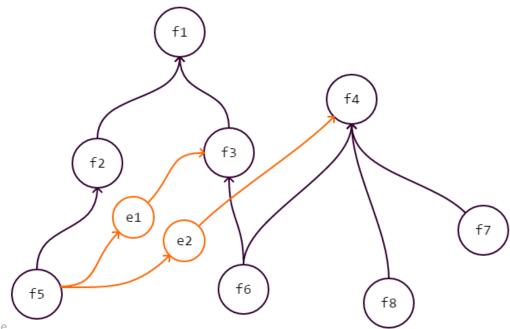
fuel incineration, cargo transport, agriculture – husbandry

Flow connections and relations (

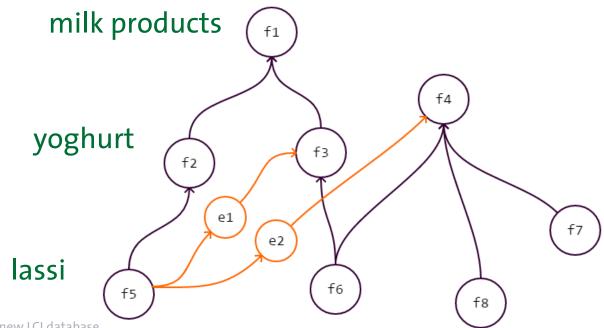

C-content in fuel is linked to CO2 emissions Mass balance for processes Energy balance for processes

Geography patterns for agriculture

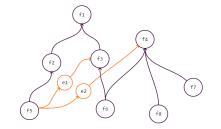
•


The LCA data machine, a bit more informatics..

- Machine written in Clojure and meant to be used in an interactive way, using REPL (read-eval-print-loop)
- an own, internal, JSON format developed to store the information


The LCA data machine, usage

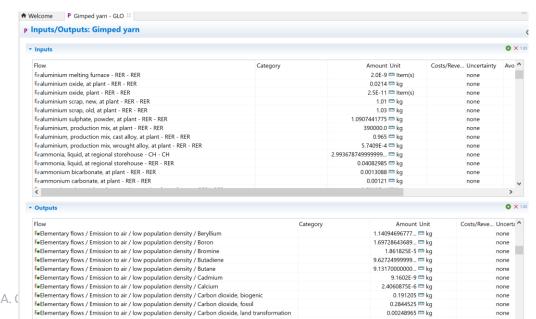
- 1) Start, and refine (12 process archetypes)
- 2) Inference graphs: flows and exchanges (i.e, connections between flows), building on the information from various sources, hierarchically organised, in multi dimensions



The LCA data machine, usage

- 1) Start, and refine (12 process archetypes)
- 2) Inference graphs: flows and exchanges (i.e, connections between flows), building on the information from various sources, hierarchically organised, in multi dimensions

The LCA data machine, usage


- Start, and refine (12 process archetypes)
- 2) Inference graphs: flows and exchanges (i.e, connections between flows), building on the information from various sources
- 3) Start "somewhere" on the graph, and collect information along the graph (go up, higher hierarchies, go down again, also in other branches, traverse)
- 4) Replace existing information for the process with better
- 5) Very powerful and flexible and lightweight programming language which can "consume" a broad variety of data

The LCA data machine, status

1) "infrastructure" is set up

GreenDelta

- end to end pipeline works (from raw data in acyclic graphs to inferred datasets in EcoSpold1 XML and JSON-LD → import into openLCA)
- Data sources and rules refined and extended

3 Application for India

An LCI database for India, data sources

- Wikipedia (subset)
- Public data (data.gov.in)
- Metereological data
- LCA Data, e.g. case studies (!)

An LCI database for India, approach

- Refining and adjusting data, for India (e.g.:
 - climate (even more local, not entire India)
 - different BOM / inputs (pesticides in agriculture, ...)
 - different efficiencies, different amounts
- Building new datasets

4 Status & outlook

Status

- LCA data machine, as "engine" for the database:
 - infrastructure set up
 - end to end processing works
 - results are promising
- Indian database: Very interesting application case
- Promises to be fast and able to deliver many datasets in good quality, fit for purpose (!)

Invitation & outreach

- We invite interested experts to contribute rules and sources, and to act as reviewers
 - Recognised review and work
 - If you are interested, send us a note or contact me directly
- We invite LCA data creation initiatives to get into contact
 - Application as "sparrings partner" for traditional data creation
 - As starting point, or one input source
 - Also feedback on how to provide data

Outlook

- Plan: establish the LCA data machine and Indian database as one LCA data source
- Not as competition to the existing LCA data sources, but as addition, to satisfy a broader need, to create data sets faster, for more widespread uses

Outlook

- Plan: establish the LCA data machine and Indian database as one LCA data source
- Not as competition to the existing LCA data sources, but as addition, to satisfy a broader need, to create data sets faster, for more widespread uses
- Additional benefit of the LCA data machine: transparent rules for data sets, in difference to ad-hoc, possibly not documented export decisions existing possibly for "traditional" LCA data sets

Greendelta

sustainability consulting + software

Thank you!

Contact: Dr. Andreas Ciroth

GreenDelta GmbH

Müllerstrasse 135, 13349 Berlin, Germany

ciroth@greendelta.com

www.greendelta.com

f2