Greenbelta

sustainability consulting + software

Introducing the LCA data machine

Andreas Ciroth, Michael Srocka GreenDelta GmbH

SETAC Brussels, May 8, 2016

Introducing the LCA data machine

- 1. A motivation
- 2. Principles of the LCA data machine
- 3. Some examples
- 4. Status and outlook

1 A motivation

A motivation for the LCA data machine

(this is probably the easiest part of the entire presentation)

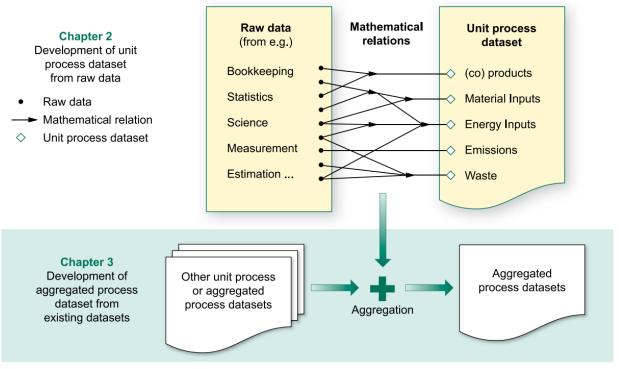
- LCA studies are data intense, modern studies integrate life cycles that cover > 10,000 individual process data sets
- Data collection and modelling is done manually, integrating expert judgement and many other sources, which is a lot of effort, error-prone, and difficult for quality assurance

A motivation for the LCA data machine

Data collection and modelling is a bottleneck for LCA

- Missing information
- Use of outdated information
- Use of incorrect information without being aware

→ Is there not another way to obtain LCA data?


The LCA data machine (LCADM)

- A system to create data sets for LCA, automatically and fast, demand-driven, with controlled fitness for purpose
- Currently developed at GreenDelta
- German research project
 "Entwicklung eines autodidaktischen Data Mining
 Algorithmus mit hierarchischen temporalen Speicher
 (HTM) zur Interpolierung des [...] Footprints von
 Produkten", 2016-2018

2 The data machine, principles

The LCA data machine, principles (1/4)

 LCA datasets are created from raw data, various sources are combined, mathematical relations applied

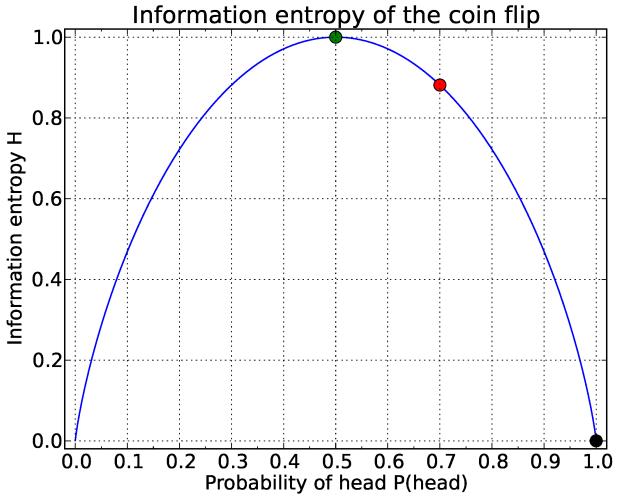
Wang Ciroth et al. 2011, p 54

The LCA data machine, principles (2/4)

 Shannon entropy is used to assess level of detail, information content for processes, in terms of absolute information content H(A) and information gain

$$H(A) = -\sum_{i=1}^{n} p_i * log_2 p_i$$

$$H(p|q) = -\sum_{i=1}^{n} p_i * log_2 \frac{p_i}{q_i}$$

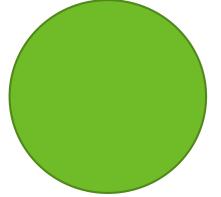

The LCA data machine, principles (2/4)

 Shannon entropy is used to assess level of detail for processes, in terms of absolute information content H(A) and information gain

$$H(A) = -\sum_{i=1}^{n} p_i * log_2 p_i$$
 Information content

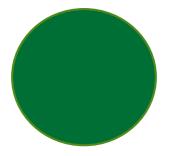
$$H(p|q) = -\sum_{i=1}^{n} p_i * log_2 \frac{p_i}{q_i}$$
 Information gain: p in addition to q

Shannon entropy, classic example: coin flip


Wellmann, J.F.: Information Theory for Correlation Analysis and Estimation of Uncertainty Reduction in Maps and Models, *Entropy* **2013**, *15*(4), 1464-1485

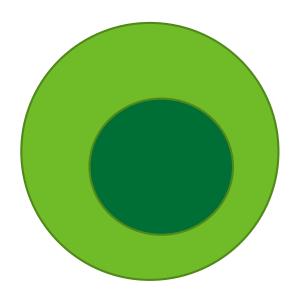
The LCA data machine, principles (3/4)

- Content conformance / data quality / fitness for purpose is used to measure the "quality" of the information
 - (i.e. how well does the product, time, geography, modelling aspects fit to what is needed)
- Can contradict Shannon entropy

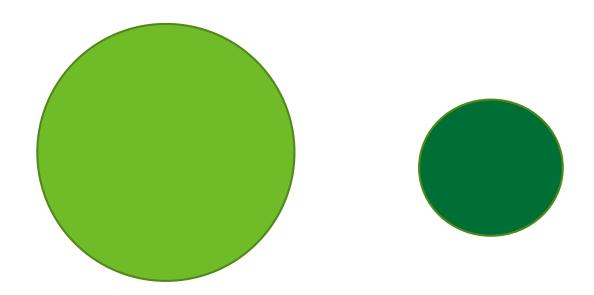

Shannon entropy vs fitness for purpose

Broader information, less specific, in scope (i.e. fit for purpose)

Data set older than 2016


More specific information

Data set from 2005


Shannon entropy vs fitness for purpose

Case 1: broader information in scope, more detailed information also in scope
 Shannon entropy →, fitness for purpose ७, improvement

Shannon entropy vs fitness for purpose

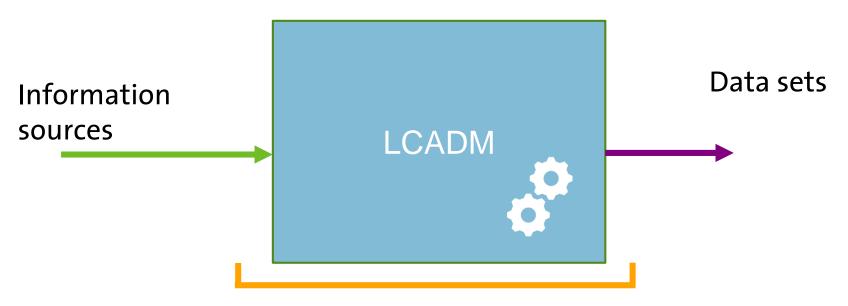
Case 2: broader information in scope, more detailed information not in scope
 Shannon entropy →, fitness for purpose →, degradation

The LCA data machine, principles (4/4) Patterns and rules defined

Process types (12 different so far:

fuel incineration, cargo transport, agriculture – husbandry

....)


Flow connections and relations (

C-content in fuel is linked to CO2 emissions Mass balance for processes Energy balance for processes

Geography patterns for agriculture

• •

The LCA data machine, a simple picture

"AI framework" (constraints, inferencing, learning)

The LCA data machine, sources

- entsoe energy statistics
- wikipedia
- emission statistics
- (literally, hundreds)...

No use of LCA data sources → instead, raw data outside of the LCA domain.

The LCA data machine, workflow

- Starting point: request for data set, with specification to understand fitness for purpose
- Seed: Process type pattern,
- Completed and refined with constraints and rules, for information from sources
- Fitness for purpose and Shannon entropy calculated
- ..until sufficient

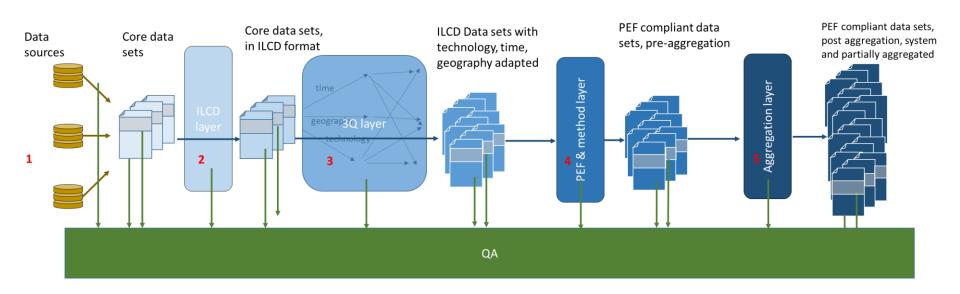
Result is a core dataset.

Expert interaction for refinement and review of rules and constraints

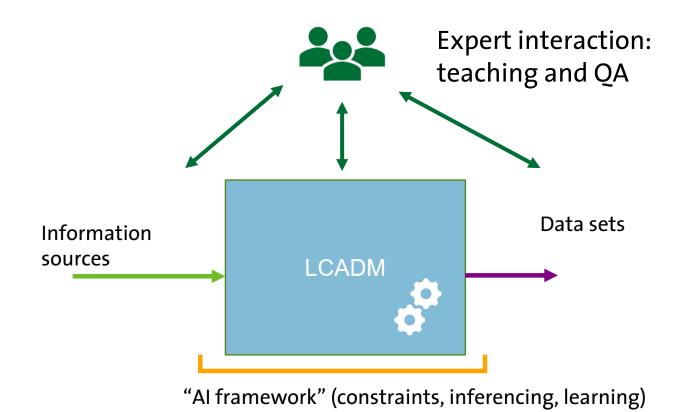
The LCA data machine, workflow

- Starting point: request for data set, with specification to understand fitness for purpose
- Seed: Process type pattern,
- Completed and refined with constraints and rules, for information from sources
- Fitness for purpose and Shannon entropy calculated
- ..until sufficient

Result is a core dataset.


Expert interaction for refinement and review of rules and constraints

The LCA data machine, workflow, 2


Specific schema requirements are applied on the core data sets after their initial creation

- Use of specific nomenclature
- Specific modelling requirements
- → This keeps the system flexible; requirements change over time e.g.
- Processing of core data sets, e.g. to migrate to other countries, is also possible

The LCA data machine, one more detailed example

The LCA data machine, expert interaction

3 Some examples

The LCA data machine, some example applications

- Creating a new data set for a specific coal power plant in Poland
- "migrating" a data set to another country (truck transport data set for the US based on a truck transport data set for average Europe
- Creating a PEF compliant data set from a core data set
- Adaptation of the existing rule and source basis to a specific application (country / product range)

4 Status and outlook, discussion

LCADM: Status

- Some delay due to selection and configuration of the correct AI "portfolio"
- Now really promising
- Rules and constraints for the 12 archetype pattern processes developed
- Machine has the ability to create data sets from scratch and to migrate data sets from one geographic setting to another
- Currently further extended
- A first public version expected end of 2017

LCADM: Invitation & outreach

- We invite interested experts to contribute rules and sources, and to act as reviewers
 - Paid-for review and work
 - Detailed announcement start of June 2017
 - If you are interested, send us a note or contact me directly
- We invite LCA data creation initiatives to get into contact
 - LCADM as "sparrings partner" for traditional data creation
 - LCADM as starting point, or one input source

LCADM: Outlook

- Plan: establish LCADM as one LCA data source
- Not as competition to the existing LCA data sources, but as addition, to satisfy a broader need, to create data sets faster, for more widespread uses

LCADM: Outlook

- Plan: establish LCADM as one LCA data source
- Not as competition to the existing LCA data sources, but as addition, to satisfy a broader need, to create data sets faster, for more widespread uses
- Additional benefit of the LCADM: transparent rules for data sets, in difference to ad-hoc, possibly not documented export decisions existing possibly for "traditional" LCA data sets

Final, personal note

- LCA data set creation today is often "somehow strange", approaches only accepted in our niche community:
 - Data sets that are declared as being representative, but they are not
 - Data sets published as being compliant to a schema, but they are not
 - Data sets published which are even technically inconsistent (invalid formulas, missing links, ...)
- We should all work together to overcome this. Using more advanced, smarter technology is one key

Greenbelta

sustainability consulting + software

Merci!

Contact: Dr. Andreas Ciroth

GreenDelta GmbH

Müllerstrasse 135, 13349 Berlin, Germany

ciroth@greendelta.com

www.greendelta.com