GreenDelta sustainability consulting + software

Life Cycle Sustainability Assessment of photovoltaic panels using soca

<u>Franziska Eisfeldt</u>, Cristina Rodríguez, Andreas Ciroth GreenDelta GmbH

Brussels, SETAC Europe 2017, 10/05/2017

PSILCA database – Agenda

- 1. Background and motivation
- 2. Objectives and approach
- 3. Methods
- 4. Results
- 5. Conclusion

1 Background and motivation

Background and Motivation

"Ensure access to affordable, reliable, *sustainable* and modern energy for all"

(Goal 7 of the UN Sustainable Development Goals (SDG) 2016)

- Sustainable energy "transforms lives, economies and the planet"
- → Covers three dimensions of sustainability
- On EU level: research on life-cycle approach for evaluating the sustainability performance of energy technologies

Background and Motivation

Challenges:

- Only a few case studies for LCSA exist so far, different approaches
- No agreed method or standards
 – how to combine life cycle tools?

→ Only some LC stages were considered

- Because hugh amounts of data are required
- So far no comprehensive database allowing efficient calculation of environmental, social and economic impacts of product life cycles simultaneously

2 Objectives and approach

Objectives and approach

 Aim: contribute to research of Life Cycle Sustainability Assessment (LCSA) by providing a tool

- Develop database containing environmental and social inventory information and costs for different product life cycles
- Test database's usability and reliability for LCSA in a case study

3 Methods

Methods: Development of database

- Develop add-on containing social inventory information for econvent v.3.3
- Ecological inventory data and costs are based on ecoinvent v.3.3
- Social inventory data based on PSILCA

Database: Mapping

 Assigning of risk-assessed indicators from PSILCA country-specific-sectors to ecoinvent categories

• Exception: market processes and activities for administration and database modelling

GreenDelta

Database: Mapping

 Ecoinvent processes of trans-national (or global) regions get an average of same/similar sectors of all related countries in PSILCA

 Ecoinvent processes of "Rest-of-World" regions get an average of similar/same sectors of all countries in PSILCA not covered individually for these activities

Database: Activity variable

- Worker hours
- Calculated out of working time per USD sector output (from PSILCA) multiplied by cost of ecoinvent product
- Average of PSILCA working times assumed for global and regional processes

Outputs

Flow	Category	Amount	Unit	Costs/Revenues
F.º barley grain, feed, organic	011:Growing of non-perennial crops/0111:Gro	1.00000	🚥 kg	0.15900 EUR
Fø Children in employment, total; no risk	Workers/Child labour	0.00185	🚥 h	
Fy Human rights issues faced by indigenous people; not appli	Local Community/Respect of indigenous rights	0.00185	🚥 h	
Fø Living wage, per month; high risk	Workers/Fair Salary	0.00185	🚥 h	
Fø Minimum wage, per month; very high risk	Workers/Fair Salary	0.00185	🚥 h	
Fo Presence of indigenous population; no risk	Local Community/Respect of indigenous rights	0.00185	🚥 h	
Fy Rate of fatal accidents at workplace; low risk	Workers/Health and Safety (Workers)	0.00185	🚥 h	
Fø Sector average wage, per month; very low risk	Workers/Fair Salary	0.00185	🚥 h	
Fø Water	Emission to air/unspecified	0.05040	🚥 kg	

Screenshot from openLCA

soca

GreenDelta

Database: Activity variable

For ecoinvent activities without costs, parameters were defined

Outputs

Flow	Category	Amount	Unit
Fø Sulfur dioxide	Emission to air/high population density	0.00088	🚥 kg
Fø Calcium	Emission to air/high population density	2.37770E-6	🚥 kg
Fa NMVOC, non-methane volatile organic compounds, unspecifie	Emission to air/high population density	2.28130E-6	🚥 kg
Fø Molybdenum	Emission to water/ground water, long-term	1.11560E-7	🚥 kg
Fo Copper, ion	Emission to water/surface water	9.71220E-6	🚥 kg
Fø Chromium	Emission to soil/agricultural	4.30130E-6	🚥 kg
Fg Zinc, ion	Emission to water/surface water	3.38050E-5	🚥 kg
Fø Lead	Emission to water/surface water	9.48660E-7	🚥 kg
Fø Cyanide	Emission to air/high population density	5.99520E-7	🚥 kg
Fg Rate of fatal accidents at workplace; medium risk	Workers/Health and Safety (Workers)	1*WH_m3	🕮 h
Fg Presence of indigenous population; no risk	Local Community/Respect of indigenous rights	1*WH_m3	🚥 h
Fy Human rights issues faced by indigenous people; not applicable	Local Community/Respect of indigenous rights	1*WH_m3	🚥 h
Fø Minimum wage, per month; very high risk	Workers/Fair Salary	1*WH_m3	🕮 h
Fa Living wage, per month; high risk	Workers/Fair Salary	1*WH_m3	🚥 h
Fa Sector average wage, per month; very low risk	Workers/Fair Salary	1*WH_m3	📟 h
Fø Children in employment, total; no risk	Workers/Child labour	1*WH_m3	🚥 h

Screenshot from openLCA

Database: Data quality

- Data quality assessment is basically transferred from PSILCA original data
- regarding geographical and technical conformance assessment, mapping and data attribution procedures were taken into consideration

🗸 📙 Forced Labour						
🚢 Goods produced by forced labour		No data	5.19122E-4			
🚢 Frequency of forced labour	1.5 [‰]	Very low risk	5.19122E-4	(2;4;3;3;2)		💷 ILO 2012: Forced Labour
🚢 Trafficking in persons	1 [Tier]	Very low risk	5.19122E-4	(2;1;1;1;4)		💷 U.S. Department of State 2014: Trafficking in Persons
🗸 🚞 Fair Salary						
🚢 Living wage, per month	883.913486 [USD]	High risk	5.19122E-4	(2;2;4;2;2)	Mean over differe	WageIndicator 2014: Living wage
🚢 Minimum wage, per month	1400 [USD]	Very low risk	5.19122E-4	(2;3;1;1;2)	Data scope: count	💷 WageIndicator 2014: Minimum wage
🚢 Sector average wage, per month	6759.4144 [USD]	Very low risk	5.19122E-4	(2;2;2;1;2)	Risk level referrin	💷 ILOstat 2014

Screenshot from openLCA

Application: Case study

• LCSA of electricity production with photovoltaic panels

1. Produce 1kWh electricity, low voltage with solar energy in Germany (DE), India (IN) and Mexico (MX)

2. To compare: produce electricity with 1 photovoltaic panel in DE, IN, MX

"electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted | electricity, low voltage"

• Calculate three dimensions of LCSA

• From cradle-to-gate

GreenDelta

Application: Impact assessment

- ReCiPe 2008, midpoint (H)
- Rudimentary method for social impacts
- Value added approach by Moreau and Weidema (2015)

Impact assessment method: Social Impacts Weighting method

▼ Impact factors						
Impact category	\Xi Gender wage ga	p				
Flow		Category	Flow property	Factor	Unit	Uncertainty
Fø Gender wage g	gap; high risk	Workers/Discrimination	Duration	10.0	GW med risk hours/h	none
Fø Gender wage g	gap; low risk	Workers/Discrimination	Duration	0.1	GW med risk hours/h	none
Fø Gender wage g	gap; medium risk	Workers/Discrimination	Duration	1.0	GW med risk hours/h	none
Fø Gender wage g	gap; no data	Workers/Discrimination	Duration	0.1	GW med risk hours/h	none
Fø Gender wage g	gap; no risk	Workers/Discrimination	Duration	0.0	GW med risk hours/h	none
Fø Gender wage g	gap; very high risk	Workers/Discrimination	Duration	100.0	GW med risk hours/h	none
Fø Gender wage g	gap; very low risk	Workers/Discrimination	Duration	0.01	GW med risk hours/h	none

Screenshot from openLCA

GreenDeLTa

4 Results

S-LCA add-on for ecoinvent v_{3.3}

Soca database

Complements environmental and cost data by social risk information:

Workers, Local communities, Value chain actors, Society 17 sub-categories 53 indicators

• "Social aspects": raw values, data quality, sources...

Case study: Relative environmental impact comparison, 1 kWh electricity

Case study: Relative social impact comparison, 1 kWh electricity

GreenDelta

Case study: LCC, 1 kWh electricity

• Total added value = **0.12 USD** for all options

→ Due to global average prices for most of the activities

Case study: Relative social impact comparison, 1 photovoltaic panel

• Environmental impacts are the same for all scenarios

Case study: Contributions, S-LCA, DE (1 kWh)

Direct process contributions to social impact categories

Others

Case study: Contributions, LCA DE (1 kWh)

Direct process contributions to environmental impact categories

Case study: Contributions, DE (1 kWh) LCC

Process	Product	Amount Unit		A	dded value
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RoW	🗛 photovoltaic panel, multi-Si wafer	0.00022	m2	-	0.09 USD
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RER	F.e photovoltaic panel, multi-Si wafer	0.00012	m2	-	0.05 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RoW	F.e flat glass, uncoated	0.00319	kg	н., н	0.01 USD
P transmission network construction, electricity, high voltage transmission network, electricity, high voltage cut-off, U - RoW	Fe transmission network, electricity,	4.48262E-7	m	1 - E	0.00 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RER	F. flat glass, uncoated	0.00066	kg	1 - E	0.00 USD
P electricity production, hydro, run-of-river electricity, high voltage cut-off, U - RoW	F.e electricity, high voltage	0.08685	MJ	1 - E	0.00 USD
P aluminium ingot, primary, to aluminium, wrought alloy market aluminium, wrought alloy cut-off, U - GLO	🗛 aluminium, wrought alloy	0.00100	kg	1.1	-0.00 USD
P electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted electricity, low voltage cut-o	F.º electricity, low voltage	3.60000	MJ		-0.07 USD

Screenshot from openLCA

Case study: Contributions, MX (1 kWh)

Contribution tree

Impact enterony In Association and home initial status	-	Contribution	Process	
Impact category I= Association and bargaining rights	·	▲ 100.00%		
Cost category \$ ¥ Added value	T	+ 00.00%		
		a 05.0076	-	
Contribution Process		▲ 08.96%	•	
4 100.00%	RWp slanted-roof installation, multi-Si papel, mounted Lelectricity, low voltage	a 05.06%	1	
▲ 09.00% ■ 09.00%	installation, 3kWp, multi-Si, panel, mounted, on roof photovoltaic slanted-ro	03.26%	1	- GLO
▲ 08.96% Photovoltaic slanted-roof installation,	, 3kWp, multi-Si, panel, mounted, on roof photovoltaic slanted-roof installatio	000.2076		
▲ 05.06% Market for photovoltaic panel, multi-S	Si wafer photovoltaic panel, multi-Si wafer cut-off, U - GLO	▷ 01.79%		
> 03.26% photovoltaic panel production, multi-	-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RoW	b 03 20%	1.00	
> 01.79% photovoltaic panel production, multi-	-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RER	p 0012070		
03.20% market for photovoltaic mounting sys	stem, for slanted-roof installation photovoltaic mounting system, for slanted-	▷ 00.61%		
□ ▷ 00.61% market for inverter, 2.5kW inverter, 2.	.5kW cut-off, U - GLO	na -		

Top 5 direct contributions

Case study: Contributions, DE (1 kWh) LCC

DE

				_	
Process	Product	Amount	Unit	A	dded value
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RoW	F. photovoltaic panel, multi-Si wafer	0.00022	m2	-	0.09 USD
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RER	F photovoltaic panel, multi-Si wafer	0.00012	m2	-	0.05 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RoW	F.º flat glass, uncoated	0.00319	kg	£	0.01 USD
P transmission network construction, electricity, high voltage transmission network, electricity, high voltage cut-off, U - RoW	F. transmission network, electricity,	4.48262E-7	m	1 - E	0.00 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RER	F.º flat glass, uncoated	0.00066	kg	() (0.00 USD
P electricity production, hydro, run-of-river electricity, high voltage cut-off, U - RoW	F. electricity, high voltage	0.08685	MJ	1.1	0.00 USD
P aluminium ingot, primary, to aluminium, wrought alloy market aluminium, wrought alloy cut-off, U - GLO	F. aluminium, wrought alloy	0.00100	kg	1.1	-0.00 USD
P electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted electricity, low voltage cut-o	F. electricity, low voltage	3.60000	MJ	-	-0.07 USD

IN

Process		Product	Amount	Unit	Ac	lded value
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RoW		🗛 photovoltaic panel, multi	0.00013	m2	-	0.06 USD
P photovoltaic panel production, multi-Si wafer photovoltaic panel, multi-Si wafer cut-off, U - RER		F. photovoltaic panel, multi	7.22803E-5	m2		0.03 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RoW		🗛 flat glass, uncoated	0.00189	kg	1	0.01 USD
P electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted electricity, low voltage cut-off, U	- IN	F. electricity, low voltage	3.60000	MJ	1.1	0.01 USD
P transmission network construction, electricity, high voltage transmission network, electricity, high voltage cut-off, U - RoW		F. transmission network, elec	2.65403E-7	m	1	0.00 USD
P flat glass production, uncoated flat glass, uncoated cut-off, U - RER		🗛 flat glass, uncoated	0.00039	kg	1.1	0.00 USD
P electricity production, hydro, run-of-river electricity, high voltage cut-off, U - RoW		🗛 electricity, high voltage	0.05142	MJ		0.00 USD

GreenDelta

5 Conclusions

Conclusions:

Soca is first database allowing complete LCSA

+ fast, efficient calculation of social and environmental impacts and costs for several life cycle stages

+ three sustainability dimensions can be evaluated for the same product system simultaneously

+ clear visualizations and comparisons of results showing different environmental, social and cost hotspots

Conclusions:

- Mapping from input/output database to LCA database
- → Average social risks for all activities of same category
- Global and RoW processes with average social and environmental risks are very dominant as contributions
- Prices are global averages for many activities → not only distorts overall costs but also worker hours (hence social impacts)
- Environmental and social inventory data, and especially costs should be much more country- and process-specific

GreenDelta

Greendelta

sustainability consulting + software

Thank you!

Contact:

Franziska Eisfeldt GreenDelta GmbH Müllerstrasse 135, 13349 Berlin, Germany eisfeldt@greendelta.com www.greendelta.com