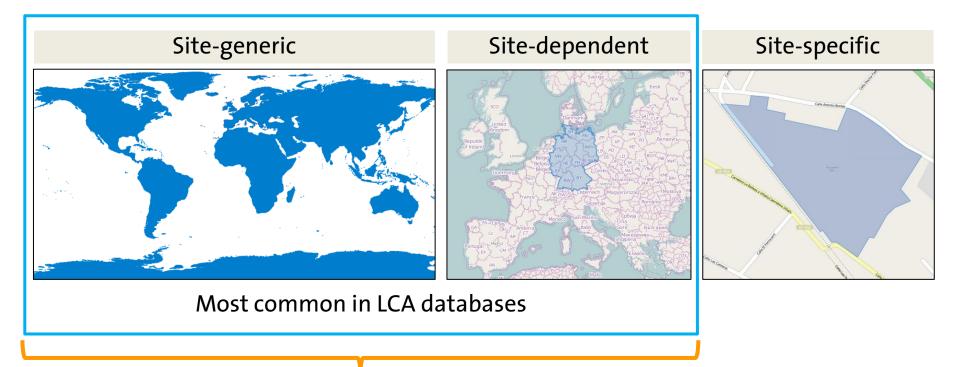
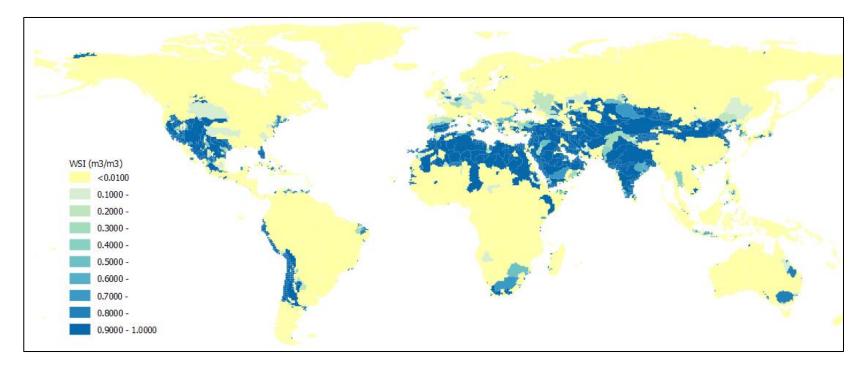

GreenDelta sustainability consulting + software

Linking regionalized LCIA methods and LCA databases: concept and practical demonstration of implementation in LCA software Cristina Rodríguez, Michael Srocka GreenDelta GmbH


> October 9, 2014 San Francisco, USA

Content

- Challenges of linking regionalized LCIA methods and LCA databases
- New concept for regionalized LCIA implementation in openLCA
- New concept implementations:
 - Parameterization of LCIA methods
 - Process locations extension
 - Calculation framework
- Application example
- Conclusions
- Outlook


Several levels of regionalization in a life cycle

Background processes

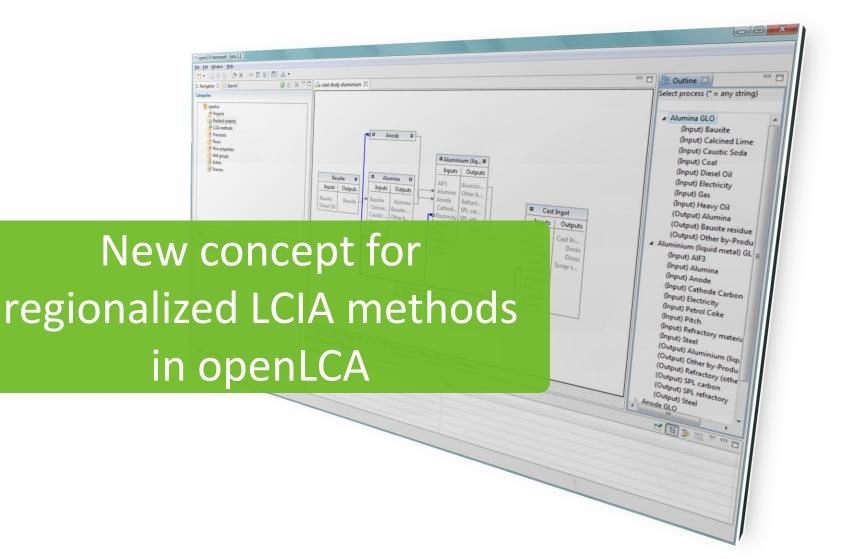
Different spatial units per impact category

• e.g. biomes, watersheds, etc.

WSI per m3 water consumed (Source: El99+)

Spatial uncertainty

- High spatial resolution might add precision to results but decrease relative accuracy
- Spatial uncertainty of inventory and CFs should be considered
 - What is the likelihood of an activity occurring in a specific location?
 - What is the real area of impact of an emission?

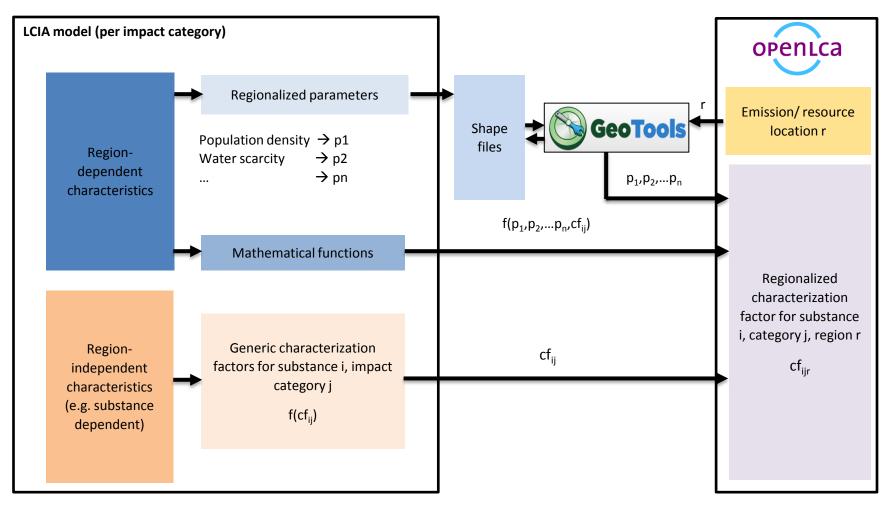

Amount of data

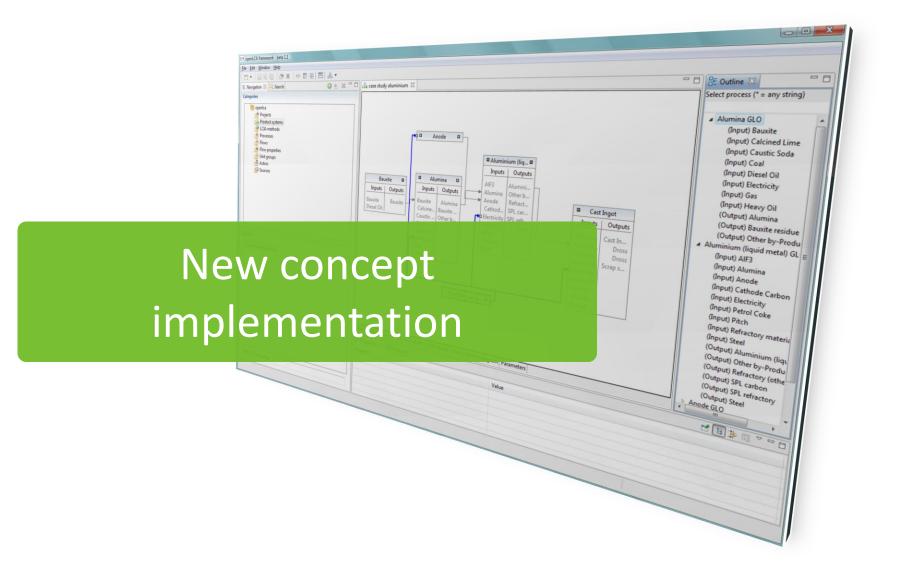
• High amount of data:

fhprocesses*elementary exchanges*locations

- Data storage capacity
- Computing power
- Interpretation of results by non-expert users

→GIS (Geographic Information Systems)


GreenDeLTa


Software: openLCA

- Free, open source LCA software developed by GreenDelta since 2006
- Written in Java
- Regionalized LCIA implemented in a project supported by the US Department of Agriculture (USDA), National Agricultural Library
- www.openlca.org

Parameterization of LCIA methods

Parameterization of LCIA methods

- Formulas for calculating the characterisation factors (CFs) can be defined
 - Input and dependent parameters can be used as in

 Impact factors 					() X 1.23
Impact category 🔮 Land use					~
Flow	Category	Flow property	Unit	Factor	Uncertainty
Occupation, arable	resource/land	Area*time	m2*a	(0.60*ratio_biom)/SA_CF	lognormal: gmean=1.36 g
Occupation, construction site	resource/land	Area*time	m2*a	(0.44*ratio_biom)/SA_CF	lognormal: gmean=1.00 g
Occupation, forest, intensive	resource/land	Area*time	m2*a	(0.04*ratio_biom)/SA_CF	lognormal: gmean=9.09E
Occupation, forest, intensive, clear-c	resource/land	Area*time	m2*a	(0.18*ratio_biom)/SA_CF	lognormal: gmean=0.41 g

Parameters

.

- Global parameters
- Input parameters

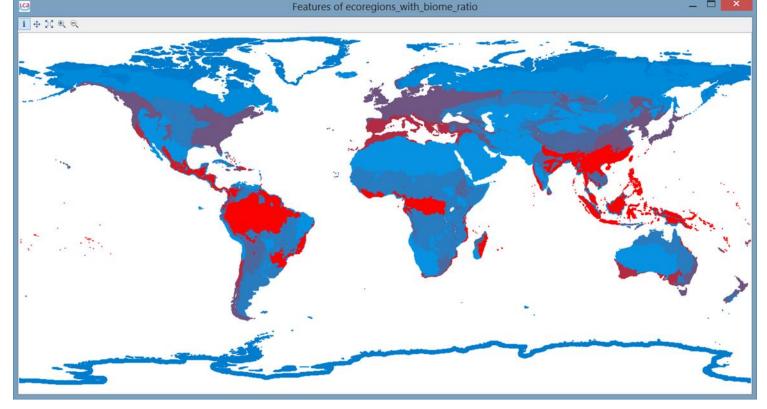
Name	Value	Uncertainty	Description
@ratio_biom	1.0	uniform: min=0.21 max=1.97	from shapefile: ecoregions_with_biome_ratio
SA_CF	0.44	none	Settlement Area Characterization Factor
SA_EF	300.0	none	Settlement Area Ecofactor

Shapefiles containing regional characteristics

Regional characteristics affecting the CFs can be defined with parameters:

e.g. population density, precipitation variability, etc.

- Data for those characteristics is contained in shapefiles, which can be imported to openLCA
- Parameters are extracted during the shapefile import


S	Shape file parameters							
	▼ Files							
	Location	C:\Users\Cristina\openLCA-data-1.4\databases\regionalised_example_olca						
		🚵 Import						
		^{¥+Y} _? Evaluate for existing locations						

Greenbelta

Shapefiles containing regional characteristics

Parameters of ecoregions_with_biome_ratio

Name	Minimum	Maximum	
f_x CLS_CODE	0.0	1144.0	
$f_x \text{ ECO_ID_U}$	10000.0	17109.0	
$f_x \text{ ECO_NUM}$	1.0	99.0	
f_x ratio_biom	0.20929077	1.96750671	

Binding shapefiles and LCIA method parameters

- Parameters of shapefiles can be bound to input parameters
- Default value of parameters is used for normal calculations and formula evaluation
- In regionalized assessment the parameter value derived from the shapefile is used for the formula

Input parameters

Name	Value	Uncertainty	Description	External source
ratio_biom	1.0	none		~
Ecofactor	610.0	none		
				ecoregions_ratio_biomes

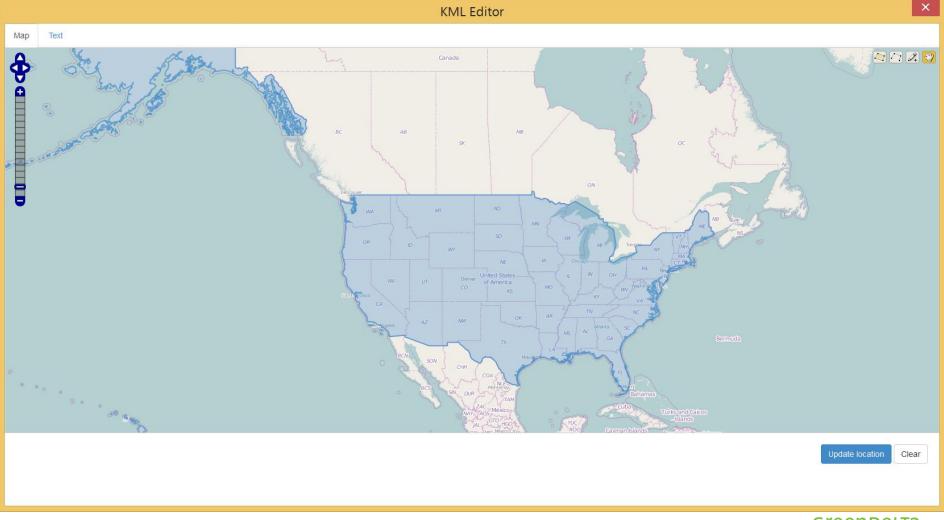
Extension of locations in openLCA (I)

Traditional approach:

- A list of locations available in the database level.
- The geographic information of the locations was limited to a pair of latitude, longitude data.
- The processes could only used locations from the pre-defined list.

				0			
Geography							
Location	United States						~
	United States						^
	United States Min	nor Outlying Isl	ands				
	Uruguay						
Geography comment	Uzbekistan						
	Vanuatu						
	Venezuela, Boliva	rian Republic o	of				
	Viet Nam						¥

• Usually, only countries, global or group of


Extension of locations in openLCA (II)

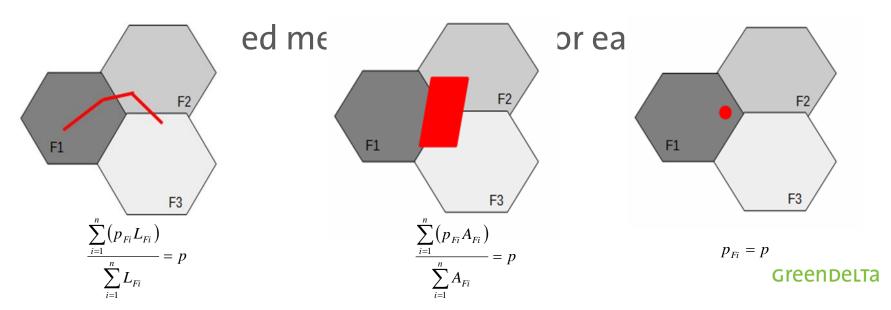
New approach:

- KML data can be added to each location (polygons, lines, points):
 - Import of kmz/xml files with geographic data.
 - Write coordinates in the "Text editor".
 - Draw the polygons, lines or points in the KML editor.

 Geography 		
Location	Switzerland	~
KML	Polygon [8.60,47.77 8.60,47.77] (location)	
	Map editor Text editor	
Description	European average values	^

Extension of locations: KML editor (map)

Extension of locations: KML editor (text)


	KML Editor	×
Мар	p Text	
1	xml version="1.0" encoding="UTF-8"?	^
2 -	<pre>2 <kml xmlns="http://earth.google.com/kml/2.1"></kml></pre>	
3	<pre><folder></folder></pre>	
4	<pre><name>OpenLayers export</name></pre>	
5		
6		
7		
8		
10		
10		
12	-	
13		00015
	-155.52719457999999,20.135102840000002 -155.49014258,20.11283029999985 -155.4457266900001,20.10520803 -155.33689612000003,20.062859189999994 -155.20630977,19.99947805	
	-155.17266842000004,19.97420827 -155.08830664000004,19.8843688 -155.07946997,19.866824649999995 -155.07593014,19.84470712999993 -155.07593014,19.765616350000016 -155.06877295,19.743912	2249999997
	-155.05768836,19.739158019999998 -155.01761328000003,19.745669249999988 -154.99311865,19.743188779999983 -154.98125891,19.734352110000007 -154.97637549,19.717402240000002	
	-154.96826229,19.666759340000006 -154.96169938,19.653220110000014 -154.92149512,19.613739319999997 -154.86987036,19.587436009999998 -154.79478451,19.5430459599999997	
	-154.79765255,19.522117000000005 -154.80527482,19.49997364999999 -154.81623023,19.479561460000003 -154.82889095,19.463929339999996 -154.91084977,19.419797670000012	
	-154.9182395,19.408635559999993 -155.00717464,19.332102759999987 -155.02409866999997,19.327348529999988 -155.04921342,19.32466135999999 -155.06869544,19.317865910000002	
	-155.10324113,19.299391580000016 -155.17147986,19.284353739999997 -155.18892066,19.275517069999992 -155.26775305,19.27892771000001 -155.28589148,19.274483540000006	
	-155.29819047,19.269470930000004 -155.32237504,19.252262679999994 -155.3545953,19.22198029000005 -155.36704932000004,19.217484439999996 -155.38337906999996,19.213479510000003	
	-155.39769344,19.203686829999988 -155.42167131,19.179915669999986 -155.43588232,19.16963205999999 -155.48683529,19.142398579999995 -155.50184728999997,19.13756682999999	
	-155.54520382,19.09800852000001 -155.5544539,19.082428080000014 -155.56941422999998,19.025687360000006 -155.61349422,18.965820210000004 -155.62742101999999,18.957396950000003	
	-155.63793717999997,18.953133649999998 -155.65617896,18.934349260000005 -155.66840043,18.93013763000008 -155.66902055,18.935589499999995 -155.68609961000004,18.964269919999996	
	-155.70870805000004,18.985198870000005 -155.74431310999998,19.00605031000002 -155.78495662,19.023026019999996 -155.82262874,19.03250864999999 -155.85510738,19.03051909999999	
	-155.86360814999998,19.03250864999999 -155.86885331,19.04183623999998 -155.87133378,19.055582169999994 -155.87595882,19.068036190000004 -155.88779272999997,19.073513900000002	
	-155.8988333,19.08242808000014 -155.9049493,19.1036922999999 -155.9039929,19.18715037000012 -155.87823259,19.346494649999997 -155.87787085,19.354633689999993 -155.8818494,19.3669	
	-155.885415,19.38864447 -155.91885026000003,19.47134490999996 -155.91957373,19.47615082000001 -155.91817847,19.48697702999988 -155.9188502600003,19.49183462 -155.92231258,19.49255800	
	-155.93569678000003,19.49111115 -155.93931413,19.49183462 -155.95140641000003,19.52674205 -155.95298254,19.535914610000003 -155.95432613,19.559220679999996 -155.95830522000003,19.581053 -155.96471309,19.601827900000007 -155.97347225,19.622162580000012 -155.99693335,19.656088160000003 -156.02339168,19.68513031 -156.04377804,19.717040510000018 -156.04917822,19.7593376700	
	-150.03786108,19.7829021200000007 -150.01649288,19.800911360000004 -155.99577063,19.814269710000005 -155.98649471,19.824217429999997 -155.98109452,19.843131 -155.96698686,19.854086410000	
	-156.03/86106,13./82902120000003 -156.01643288,19.800311360000000 -155.945/063,19.814269/10000005 -155.986494/1,19.82421/42999999/ -155.98109432,19.843131 -155.96698686,19.854086410000 -155.92505143,19.868581639999988 -155.90487179,19.901887110000008 -155.89494991,19.91325592 -155.85678687,19.96821381 -155.84993974,19.975138449999992 -155.8183396,19.99947805	101
	-155.80896033,20.012578020000007 -155.80862442999998,20.029915469999988 -155.81924394,20.04950083 -155.82262874,20.053583270000015 -155.87226395999997,20.11303700999999	<u> </u>
		•

Update location Clear

Calculation framework

Linking of process locations and LCIA methods spatial units

- GeoTools libraries integrated in openLCA
 - The intersection between shapefiles features and process geometries is calculated.

Calculation framework

Regionalised LCIA calculation

- Creation of a regionalised result matrix for the inventory (GR)
- Creation of a regionalised LCIA matrix (CR)
- Creation of the regionalised LCIA result (RR)

RR = CR * GR

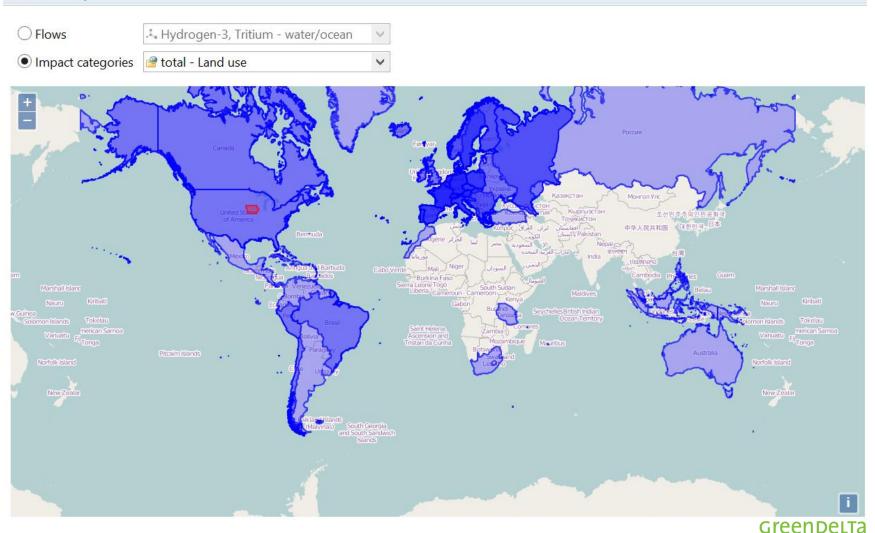
Regionalised LCIA: Calculation procedure

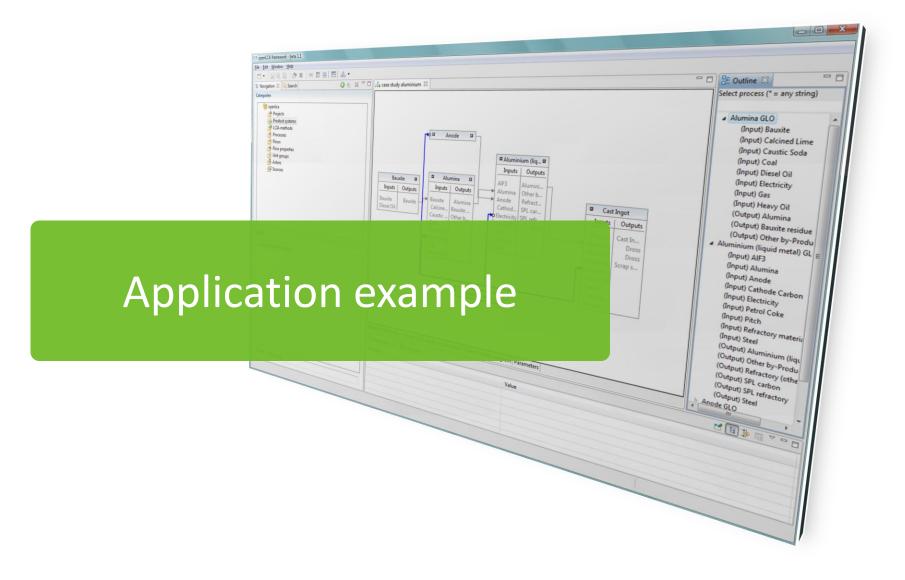
 Select the "Regionalized LCIA" option in the calculation properties window:

\rightarrow The i	8	Calculation properties – 🗖	x
regiona	Calculation properties Please select the properties for the	e calculation	
	Allocation method	None	~
	Impact assessment method	ecological scarcity 2013 (per country and biome)	~
	Normalization and weighting set		~
	Calculation type	○ Quick results	
		○ Analysis	
		Regionalized LCIA	
		O Monte Carlo Simulation	
		Number of iterations: 100	
	Save as def	ault Reset Calculate Cancel	

Regionalised LCIA: Calculation procedure

 To reduce the calculation time for complex systems, it is recommended to evaluate the intersections with the existing database locations when the impact method is defined.

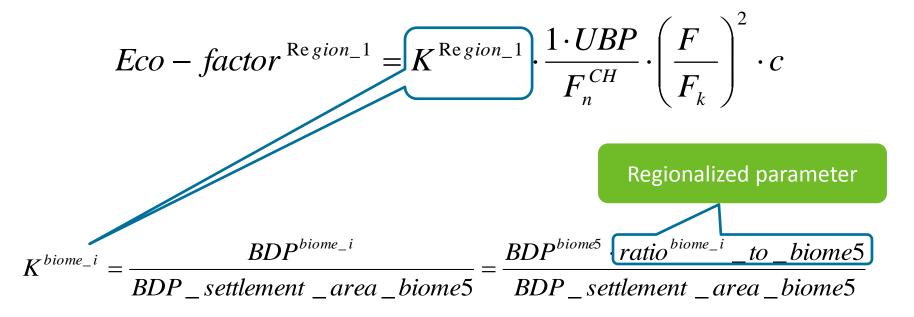

Shape file parameters


▼ Files	
Location 🕒 C:\Users\Cristina\openLCA-data-1.4\databases\regionalised_example_olca	
🚵 Import	
Evaluate for existing locations	
Parameters of ecofactors_renamed	😵 🗙

Name	Minimum	Maximum
f_x Critical F	0.004	1646.6
f_x Current F	0.0	761.0
f_x Ecofactor	0.0	2.0E7
f. Normalizat	2 614	2.614

Regionalised LCIA: Results

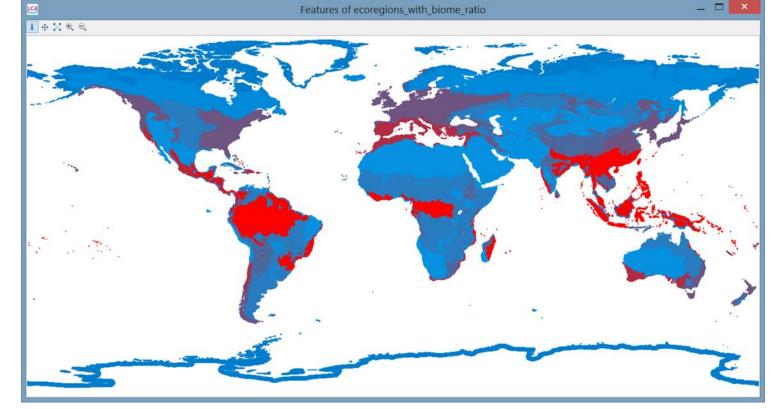
Result map



Case study

- Functional unit: Production of 1kg of corn grain, at harvest in 2005; at farm; 85%-91% moisture
- Production in 5 estates of US: Illinois, Iowa, Minnesota, Nebraska and North Dakota
- System boundaries: Cradle to farm-gate
- Foreground system:
 - USDA crop database
 - KML data: US Census Bureau
- Background system:
 - ecoinvent 2.2. unit processes, GaBi 2012 full US
 - KML data: ecoinvent 3 geographies

Regionalized impact category


- Land use:
 - de Baan et al. (2012), as implemented in Ecological Scarcity 2013:

Land use regionalized parameter

Parameters of ecoregions_with_biome_ratio

Name	Minimum	Maximum	
f_x CLS_CODE	0.0	1144.0	
f_x ECO_ID_U	10000.0	17109.0	
f_x ECO_NUM	1.0	99.0	
f_x ratio_biom	0.20929077	1.96750671	

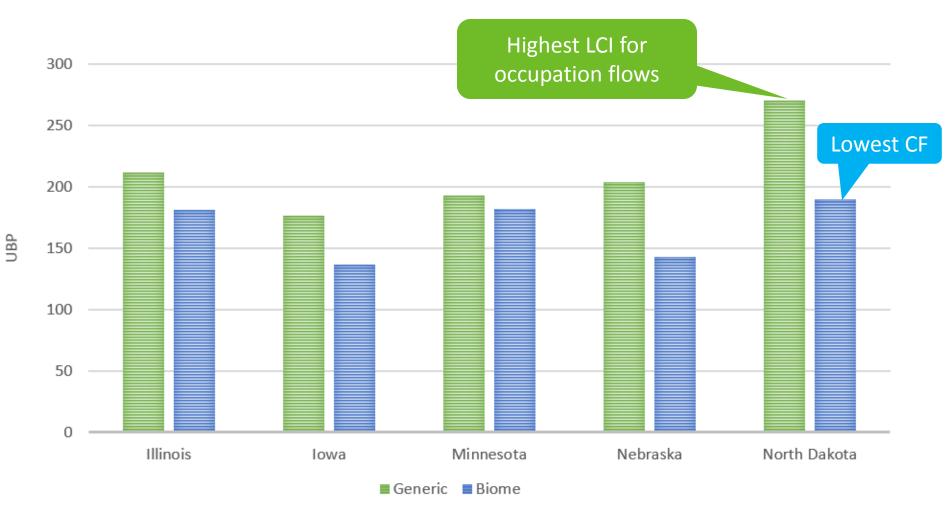
Land use parameterized formulas

✓ Impact factors Impact category [™] Land use						
Occupation, arable	resource/land	Area*time	m2*a	(0.60*ratio_biom)/SA_CF	lognormal: gmean=1.36 g	
Occupation, construction site	resource/land	Area*time	m2*a	(0.44*ratio_biom)/SA_CF	lognormal: gmean=1.00 g	
Occupation, forest, intensive	resource/land	Area*time	m2*a	(0.04*ratio_biom)/SA_CF	lognormal: gmean=9.09E	
Occupation, forest, intensive, clear-c	resource/land	Area*time	m2*a	(0.18*ratio_biom)/SA_CF	lognormal: gmean=0.41 g	

Parameters

Global parameters

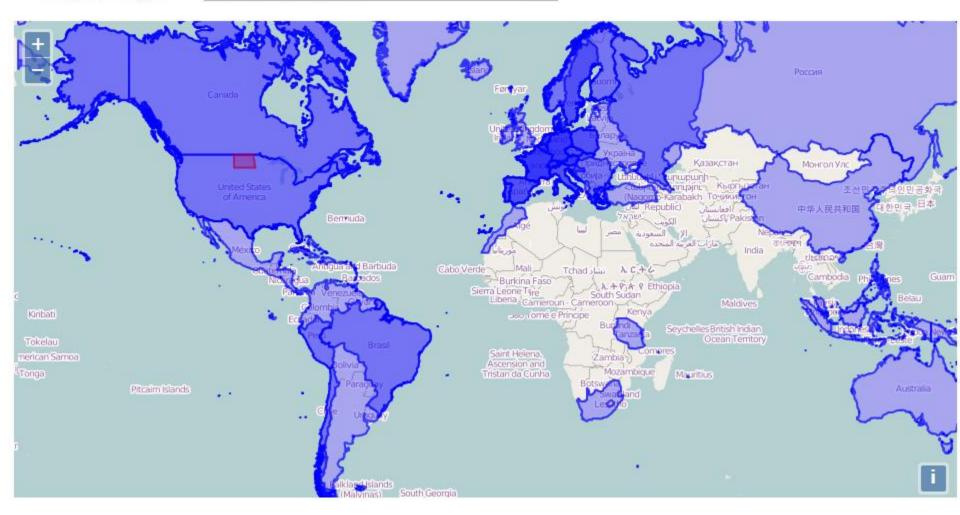
Input parameters


Name	Value	Uncertainty	Description
aratio_biom	1.0	uniform: min=0.21 max=1.97	from shapefile: ecoregions_with_biome_ratio
SA_CF	0.44	none	Settlement Area Characterization Factor
SA_EF	300.0	none	Settlement Area Ecofactor

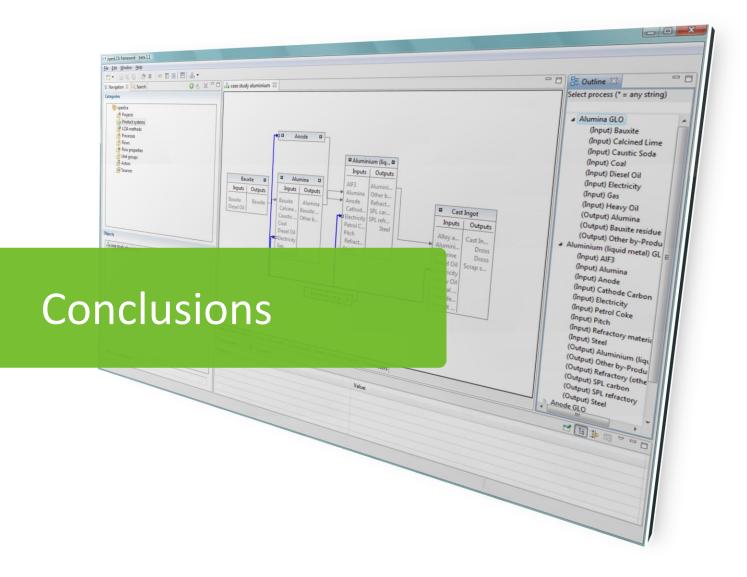
Regionalized characterization factors

• Eco-factor for land use (Occupation, arable)

LCIA results: land use



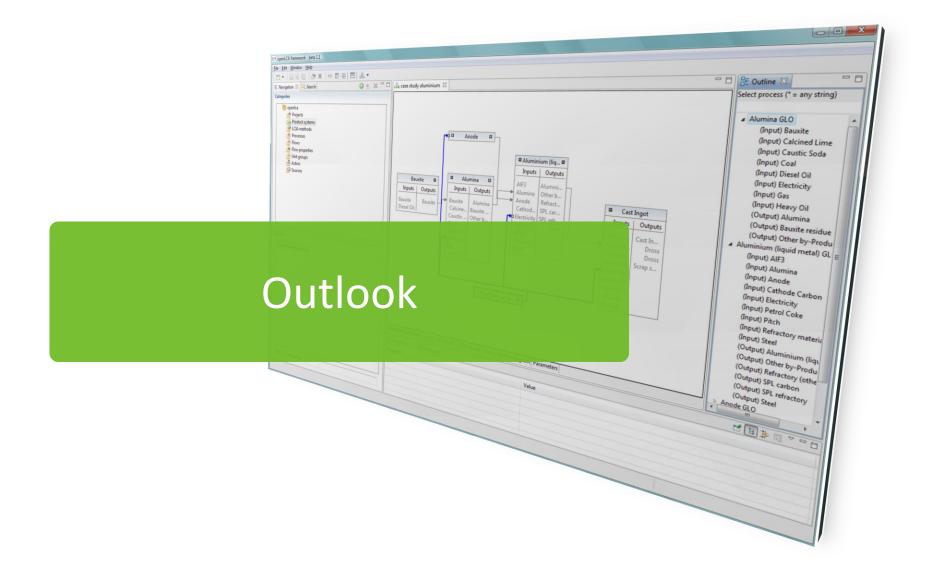
LCIA results: land use


Impact categories

🔮 total - Land use

.

Results for North Dakota



Conclusions

- Regionalized LCIA in openLCA works successfully without affecting significantly the calculation time required
- High variations in results due to different inventory and different characterization factors between locations

 \rightarrow Added complexity to results interpretation

- The most suitable spatial resolution per parameter should be defined
- Weighted aggregations might be useful for avoiding misleading values (e.g. emission proxies)

Future software development

- Regionalized LCIA implementation in the Project level (i.e. comparative analysis)
- Further results views (e.g. contributions per location, etc.)
- Background processes tag: avoid data sets from generic databases when performing a regionalized LCIA

Other ideas

- Geographic distributions of the processes when determining the location of each activity
- Consider geographic uncertainty per data set exchange and LCIA CF
- Include transport pathways of emissions
- Seasonal variations of regional parameters

Thank you!

Greendelta

sustainability consulting + software

Cristina Rodríguez GreenDelta GmbH Muellerstrasse 135, 13349 Berlin rodriguez@greendelta.com www.greendelta.com