Greenbelta

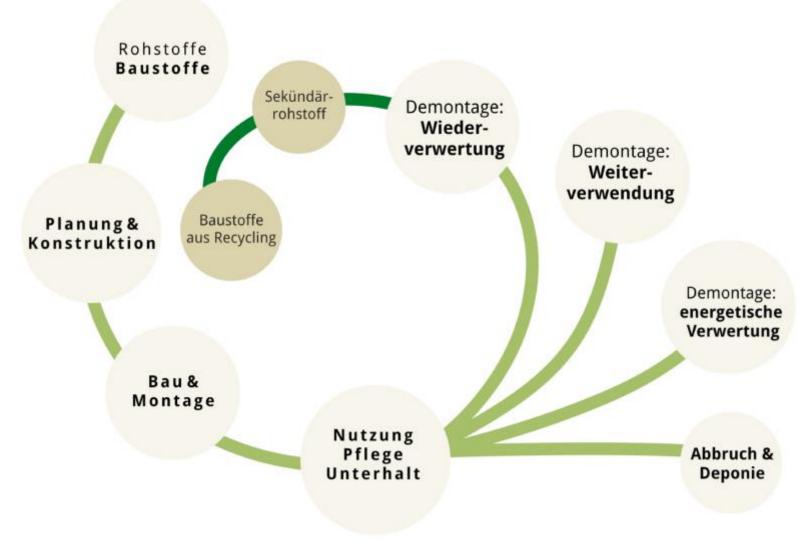
sustainability consulting + software

Indikatoren zur Ressourceneffizienz in der Ökobilanzierung, aktueller Stand

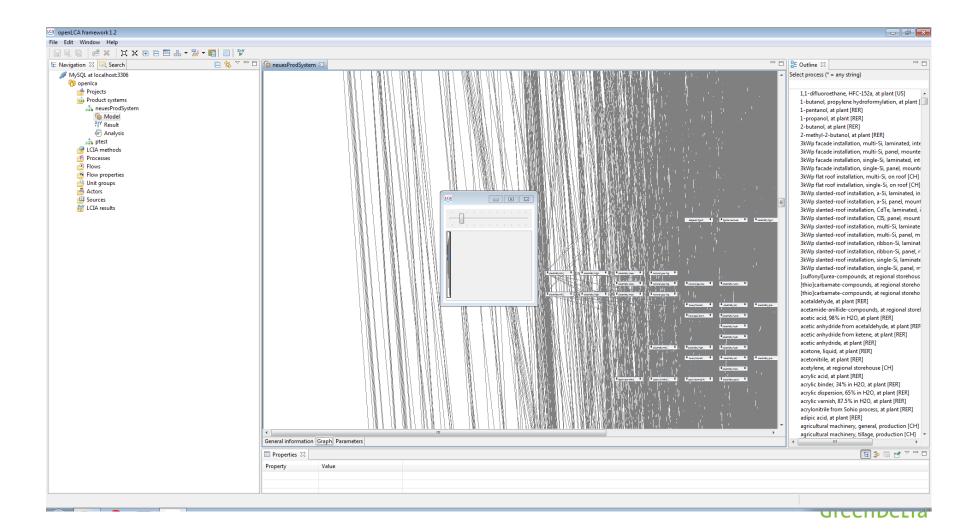
Andreas Ciroth
GreenDelta GmbH Berlin

3. Sitzung Runder Tisch Ressourceneffizienz im Bauwesen Berlin, 15.05.2014

Indikatoren zur Ressourceneffizienz in der Ökobilanzierung, aktueller Stand

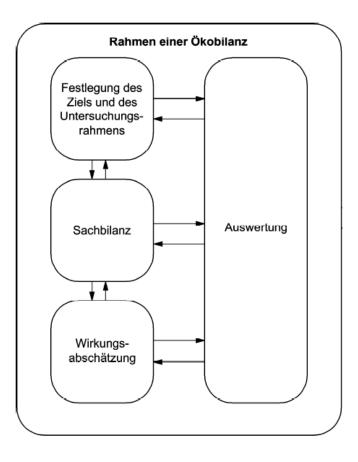

- 1 Ökobilanzierung
- 2 Ressourceneffizienz
- 3 Ressourcenindikatoren in der Ökobilanzierung
 - a. Prinzip
 - b. CML
 - c. ReCiPe
- 4 Praktisches Beispiel: Mehretagenhaus
- 5 Schlussfolgerungen, Ausblick

1 Ökobilanzierung


Ökobilanzierung

- Standardisierte Methode zur Abbildung der Umweltauswirkungen von Produkten über den gesamten Lebensweg, von Ressourcenextraktion über Produktion, Nutzung, Entsorgung (ISO 14040/44; ISO 14067; GHG Protocol; etc.)
- Typischerweise viele verbundene Prozesse als kleinste Einheiten im Lebensweg, jeder einzelne davon eher simpel modelliert

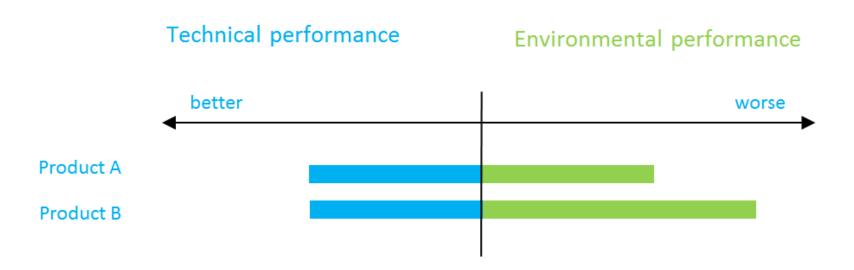
Ökobilanzierung: Lebensweg eines Gebäudes


Ökobilanzierung

Ökobilanzierung

- Prinzip der vier Phasen, iterativer Prozess

(Bild aus ISO 14040)



Besonders Kennzeichen der Ökobilanz: Prinzip der "Funktionellen Einheit":

- Die funktionelle Einheit drückt den Nutzen aus den ein Produkt bereitstellt;
- Für das Produkt stellt die Ökobilanz dann die gesamten Umweltauswirkungen zusammen.
- Zwei oder mehrere Produkte können genau dann verglichen werden, wenn sie die gleiche funktionelle Einheit haben.

Beispiele für die funktionelle Einheit:

- 1m² Farbe, deckend aufgetragen auf Außenwand, haltbar für 3 Jahre unter normalen Witterungsbedingungen
- Eine Glühbirne / "Leuchtmittel", Leuchtkraft 400 Lumen, für 10.000h Betriebsdauer

Quelle: Ciroth, Franze: Social Extension Task Force report, Task III and IV, modeling, assessment, and aggregation of social indicators along the life cycle, PROSUITE 7th FP, 2013

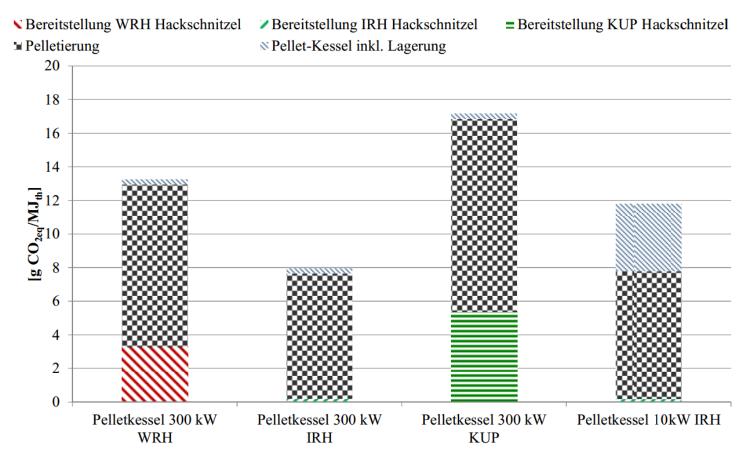


Abbildung 2.3-22: Treibhausgasemissionen eines Waldrestholz, Industrierestholz und Kurzumtriebsplantagen-Weide Pellet Kessels mit 300 bzw. 10 kW [BioEnergieDat 2012]

Definition Ressourceneffizienz:

Verhältnis eines bestimmten Nutzens oder Ergebnisses zum dafür nötigen Ressourceneinsatz (z.B. Schultmann 2013)

Ressourceneffizienz =
$$\frac{\text{Nutzen}}{\text{Ressourceneinsatz}}$$

Prinzip:

• Je höher die Ressourceneffizienz, umso besser

Bei gleichem Nutzen:

Je niedriger der Ressourceneinsatz, umso besser

Ressourcen sind sehr verschiedene Rohstoffe etc. deren Verbrauch ("Einsatz") unterschiedlich schlimm oder "kritisch" ist

Ressourcen sind sehr verschiedene Rohstoffe etc. deren Verbrauch ("Einsatz") unterschiedlich schlimm oder "kritisch" ist

→ Kern der Ressourceneffizienzdefinition ist die Definition der "Kritikalität" der Ressourcen.

(Steinkohle – Kupfererz – Gallium)

Kritikalität von Ressourcen: Einflussgrößen (je Rohstoff), Beispiele

• Zeit:

- Technische Entwicklungen (neuer Bedarf durch neue Technik; durch gesetzliche Entwicklungen; wachsende Erdbevölkerung; neue Rohstoffförderungen durch neue Technik; ...)
- Asbest Coltan/Tantal Wasser

Bedarf

 Jährlicher Bedarf, akkumulierter / prognostizierter Bedarf, gemessen in Masse- oder Energieeinheiten oder in Marktvolumen (€, US-\$), weltweit oder lokal aufgelöst (Wasser)

Vorrat:

- Insgesamt verfügbarer Vorrat
- "mit vernünftigem Aufwand förderbar" / Aufwand für die Förderung mit einbezogen
- Weltweit oder regional aufgelöst

3 Ressourcenindikatoren in der Ökobilanzierung

Ressourcenindikatoren in der Ökobilanzierung: Drei Beispiele

Drei Wirkungsabschätzungsmethoden, die Ressourcenverbrauch als Indikator enthalten

- CML: Uni Leiden, seit 1996
- ReCiPe: Weiterentwicklung von CML, letzte Version 1.08 von Feb 2013
- Ökologische Knappheit (ecological scarcity)

CML: http://cml.leiden.edu/software/data-cmlia.html, letzte Version 2013

ReCiPe: www.lcia-recipe.net/

Ecoogical scarcity: www.bafu.admin.ch/publikationen/publikation/o1750/index.html?lang=de

Allgemeine Informationen			
Name CML, 2001 (non baseline)			
Beschreibung Version 4.2. of April 2013. It contains additional impac	ct categories to those in the baseline method. N	Normalization data for different countries and years is provided.	
Version 00.00.000 (a) (b)			
Letzte Änderung Wirkungskategorien			
Name		Beschreibung	Referenzeinheit
Photochemical oxidation - EBIR (low NOx)		photochemical oxidation (EBIR; low NOx)	kg formed ozone
Photochemical oxidation - high NOx (incl. NO	0x, NMVOC average)	photochemical oxidation (high NOx)(incl. NOx avera	kg ethylene eg.
Climate change - lower limit of net GWP100		global warming net (GWP100 min)	kg CO2 eq.
Ozone layer depletion - ODP30		ozone layer depletion (ODP30)	kg CFC-11 eq.
Ozone layer depletion - ODP5		ozone layer depletion (ODP5)	kg CFC-11 eq.
Climate change - GWP20		global warming (GWP20)	kg CO2 eq.
Odour		odour	m3
Photochemical oxidation - MOIR (high NOx)		photochemical oxidation (MOIR; high NOx)	kg formed ozone
Ozone layer depletion - ODP40		ozone layer depletion (ODP40)	kg CFC-11 eq.
Marine sedimental ecotoxicity - MSETP20		Marine sedimental ecotoxicity (MSETP20)	kg 1,4-dichlorobenzene eq.
Ozone layer depletion - ODP20		ozone layer depletion (ODP20)	kg CFC-11 eq.
Marine aquatic ecotoxicity - MAETP20		Marine aquatic ecotoxicity (MAETP20)	kg 1,4-dichlorobenzene eq.
Climate change - upper limit of net GWP100		global warming net (GWP100 max)	kg CO2 eq.
Photochemical oxidation - high NOx (incl. NN	/IVOC average)	photochemical oxidation (high NOx)(incl. NMVOC a	kg ethylene eq.
Ozone layer depletion - ODP steady state (incl	I. NMVOC average)	ozone layer depletion ODP steady state (incl. NMVO	kg CFC-11 eq.
Acidification potential - generic		acidification (fate not incl.)	kg SO2 eq.
Freshwater aquatic ecotoxicity - FAETP20		Freshwater aquatic ecotoxicity (FAETP20)	kg 1,4-dichlorobenzene eq.
Radiation		radiation	DALYs (Egalitarian, Hierarchist
Photochemical oxidation - MIR (very high NO	x)	photochemical oxidation (MIR; very high NOx)	kg formed ozone
Freshwater aquatic ecotoxicity - FAETP100		Freshwater aquatic ecotoxicity (FAETP100)	kg 1,4-dichlorobenzene eq.
Terrestrial ecotoxicity - TETP500		Terrestrial ecotoxicity (TETP500)	kg 1,4-dichlorobenzene eq.
Climate change - GWP500		global warming (GWP500)	kg CO2 eq.
Ozone layer depletion - ODP25		ozone layer depletion (ODP25)	kg CFC-11 eq.
Ozone layer depletion - ODP10		ozone layer depletion (ODP10)	kg CFC-11 eq.
Eutrophication - average Europe		eutrophication (incl. fate, average Europe total, A&B)	kg NOx eq.
Marine sedimental ecotoxicity - MSETP500		Marine sedimental ecotoxicity (MSETP500)	kg 1,4-dichlorobenzene eq.
Human toxicity - HTP20		human toxicity (HTP20)	kg 1,4-dichlorobenzene eq.
Freshwater sedimental ecotoxicity - FSETP500		Freshwater sedimental ecotoxicity (FSETP500)	kg 1,4-dichlorobenzene eq.
Ozone layer depletion - ODP15		ozone layer depletion (ODP15)	kg CFC-11 eq.
Land use - land competition		Landuse increase of land competition	m2*yr
Depletion of abiotic resources - elements, res	erve base	abiotic depletion (elements, reserve base)	kg antimony eq.
Terrestrial ecotoxicity - TETP100		Terrestrial ecotoxicity (TETP100)	kg 1,4-dichlorobenzene eg.

Indikator ADP, "abiotic resource depletion":

$$abiotic depletion = \sum_{i} ADP_{i} \times m_{i}$$

$$(4.3.1.2)$$

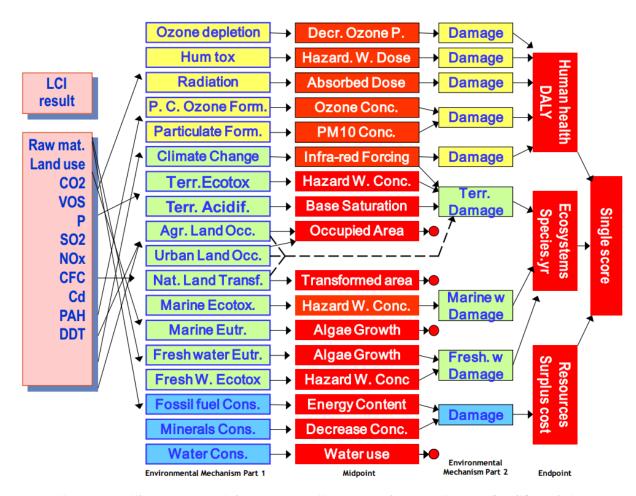
with:

$$ADP_i = \frac{DR_i}{(R_i)^2} \times \frac{(R_{ref})^2}{DR_{ref}}$$
(4.3.1.3)

and:

ADP_i Abiotic Depletion Potential of resource i (generally dimensionless);

m_i quantity of resource i extracted (kg);
R_i ultimate reserve of resource I (kg);
DR_i extraction rate of resource i (kg·yr⁻¹)


R_{ref} ultimate reserve of the reference resource, antimony (kg)

 DR_{ref} extraction rate of R_{ref} (kg·yr⁻¹)

The indicator result is expressed in kg of the reference resource, viz. antimony.

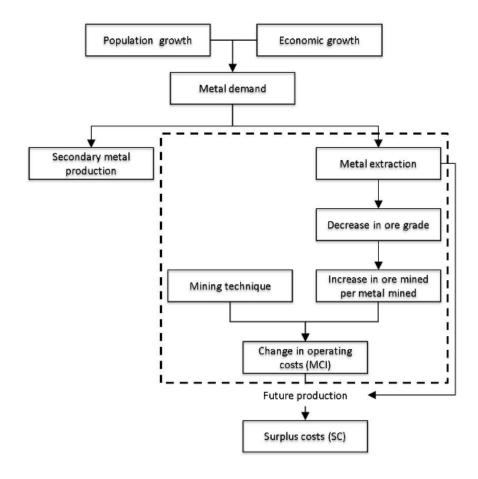
Guinée, J. B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van
Oers, L.; Sleeswijk, A. W.; Suh, S.; Udo de Haes, H. A.: Handbook on Life Cycle Assessment - Operational Guide to the
ISO Standard. Dordrecht, The Netherlands: Kluwer Academic, 2002, part 3, p 156

GreenDelta

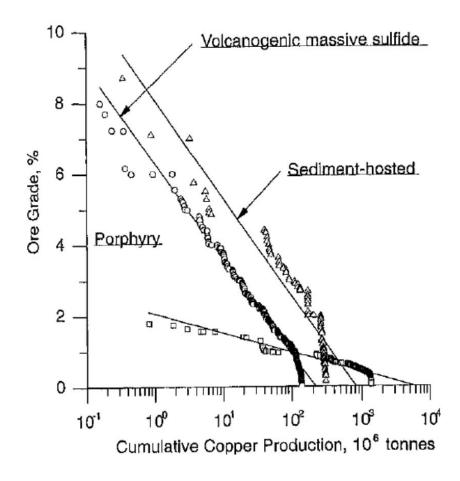
Mehrstufiger Bewertungsprozess: Drei verschiedene Resourcentypen:

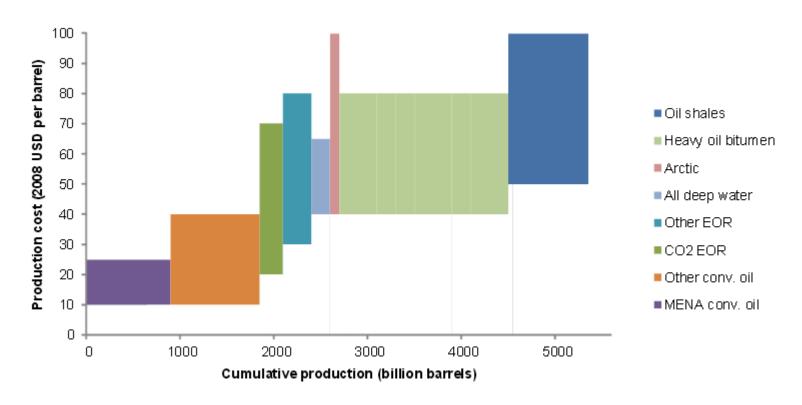
- Fossil fuels
- Minerals
- Water

ReCiPe Methode selbst unterscheidet zwischen "midpoints" und "endpoints"


Mehrstufiger Bewertungsprozess, Grundidee:

- Step 1: A marginal increase in yield (in \$), caused by an extraction (the LCI parameter) of a deposit results in a marginal lower grade (in \$/kg) of the deposit. As a deposit usually contains more than one commodity, a value (\$) weighted average yield (\$) and grade (\$/kg) is used.
- Step 2: The relation between ore grade and mining cost is established. The value weighted grade (\$/kg), determines how much ore needs to be extracted. A marginal decrease in grade (in \$/kg) results in extra mining cost (\$/kg). The marginal cost increase (\$/\$) is non linear with the grade decrease and thus depends on the current ore grade. We have chosen to determine the marginal increase at the grade that corresponds with the median of the extracted amount in our dataset.
- Step 3: The marginal cost increase on deposit level can be calculated by combining step 1 and 2. This factor can be defined as the marginal average cost increase (\$/\$) due to extracting a dollar value of deposit d (1/\$).
- Step 4: From the marginal cost increase factor on deposit level we go to the cost increase factor on commodity level. The average weighted yield of the cost increase of all deposits that contribute to the production of the commodity is calculated.
- Step 5: Until here the marginal cost increase factors we developed for an extraction is expressed as monetary value. In LCA, resource extractions are usually defined as a mass. Therefore the marginal cost increase must be converted to mass extracted.


From the marginal cost increase factor in step 5, we develop a midpoint characterisation factor,


Grundidee (Bsp. Metalle):

Grundidee (Bsp. Metalle):

Grundidee (Bsp. Rohöl):

Ressourcenindikatoren in der Ökobilanzierung, Beispiel 3: Ökologische Knappheit

Unterscheidung in

- a) Energetische Ressourcen a.1 erneuerbare energetische Ressourcen a.2 nicht erneuerbare energetische Ressourcen
- b) Land/Fläche als Ressource
- c) Mineralien und Metalle

Ressourcenindikatoren in der Ökobilanzierung, Beispiel 3: Ökologische Knappheit, Prinzip

- K = Charakterisierungsfaktor einer Emission oder Ressource
- F_n = Normierungsmenge (Fachwort: Normierungsfluss): Aktuelle jährliche Menge (Emission oder Verbrauch), bezogen auf die Schweiz
- F = Aktuelle Menge (Fachwort: aktueller Fluss): Aktuelle jährliche Menge (Emission oder Verbrauch), bezogen auf das Referenzgebiet
- F_k = Toleranzmenge (Fachwort: kritischer Fluss): Gesetzlicher Grenzwert, bezogen auf das Referenzgebiet
- $c = Konstante (10^{12}/a)$: Dient dazu, einfach darstellbare Zahlengrössen zu erhalten
- UBP = Umweltbelastungspunkt: Einheit der bewerteten Umweltwirkung

Frischknecht, R.; Rolf Frischknecht, Büsser Knöpfel, S.: Ökofaktoren Schweiz 2013 gemäss der Methode der ökologischen Knappheit, Bafu 2013, S. 44

Ressourcenindikatoren in der Ökobilanzierung, Beispiel 3: Ökologische Knappheit, Bsp. energetische Ressourcen 1

Tab. 75 > Verbrauch von Endenergie nach Energieträgern in der Schweiz gemäss Energiestatistik 2010 (BFE 2011) und dessen Umrechnung in den charakterisierten Primärenergieverbrauch

	Energieverbrauch (unterer Heizwert) (TJ)	Zusammen- setzung	Verhältnis Heizwert / Brennwert	Energieverbrauch (Brennwert) (TJ)	Primär- energiefak- tor, total	Primärenergie- verbrauch, total (TJ)	Primärenergieverbrauch, charakterisiert (TJ Öl-eq.)
Total						1 537 631	1 428 329
Fossile Energieträger							
Heizől extra-leicht	191 460		0.94	203681	1.24	252 261	251 192
Heizől mittel und schwer	2230		0.94	2372	1.24	2938	2926
Petrolkoks	1640		0.94	1745	1.69	2947	2934
übrige Erdölbrennstoffe	4 190		0.94	4457	1.24	5521	5497
Gas	115510		0.90	128344	1.12	143446	143 137
Benzin	134 650		0.93	144785	1.29	186409	186 044
Diesel	98 780		0.94	105085	1.22	127870	127 667
Flugtreibstoffe	61 400		0.94	65319	1.19	77 707	77 593
Flüssigpropan/Flüssigbutan	0		0.92	-	1.18	0	0
Kohle	6420						
Steinkohle		72.7%	0.96	4862	1.21	5862	5839
Braunkohlebriketts		19.4 %	0.96	1299	1.21	1566	1560
Steinkohlekoks		7.9%	0.96	527	1.69	890	886
Biomasse							
Holz	38 090						
Stückholz		45.0 %	0.92	18631	1.06	19731	7 2 2 6
Holzschnitzel		50.0%	0.90	21 161	1.14	24203	8965
Pellets		5.0 %	0.91	2093	1.22	2559	1146
Biogas	1620		0.90	1800	0.37	666	626

Ressourcenindikatoren in der Ökobilanzierung, Beispiel 3: Ökologische Knappheit, Bsp. energetische Ressourcen 2

Tab. 76 > Die Ökofaktoren für Primärenergieverbrauch gemäss den Zeitpunkten 2013 und 2050 in UBP/MJ Öl-eq.

	Ziel 2013	Q	Ziel 2050	Q	Bemerkungen
Normierung (PJ Öl-eq./a)	1 428	Α	1 428	Α	Charakterisierte Energiemenge
Aktueller Fluss (PJ/a)	1 538	Α	1538	Α	
Kritischer Fluss (PJ/a)	1 538	b	566	b	
Gewichtung (-)	1.00		7.37		
Ökofaktor (UBP/MJ Öl-eq.)	0.70		5.16		Basis für die Interpolation
		1			

Q = Datenqualität; Erläuterung siehe Teil 2, Kap. 6

Ressourcenindikatoren in der Ökobilanzierung: Stellenwert

Ressourcenindikatoren in der Ökobilanzierung haben NICHT die Funktion, Umweltauswirkungen abzubilden, ...

..sondern sollen stattdessen den ökonomischen Effekt des Verbrauchs darstellen

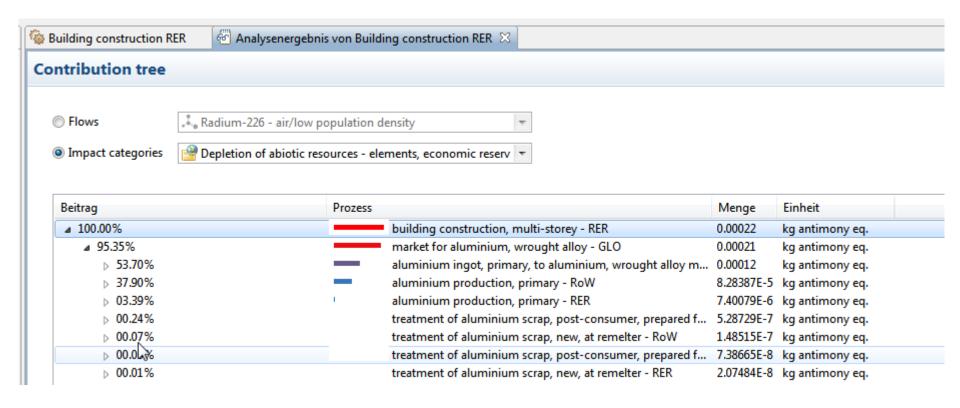
(→ Nachhaltigkeit: Vorsorgeprinzip, künftige Generationen)

Ressourcenindikatoren in der Ökobilanzierung: Stellenwert

Ressourcenindikatoren in der Ökobilanzierung haben NICHT die Funktion, Umweltauswirkungen abzubilden,

• •

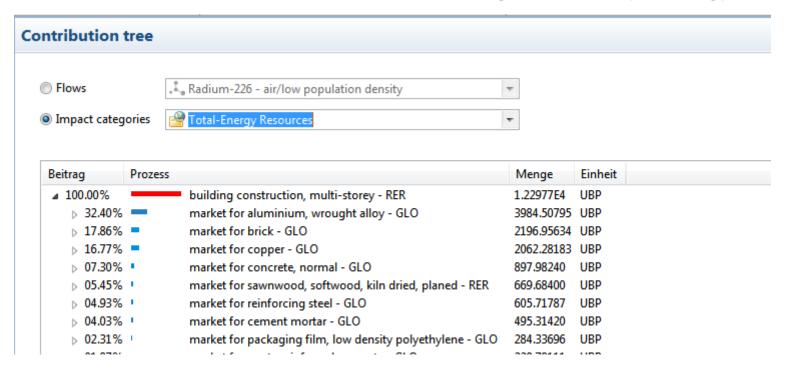
"Umweltauswirkungen werden über die anderen Wirkungskategorien der Ökobilanz abgedeckt.


kungsmeth	ode: CML, 2001 (non baseline)		
Allgemeine Inf	ormationen		
lerne	CML, 2001 (non baseline)		
eschreibung	Version 4.2. of April 2013.		
	It contains additional impact categories to those in the baseline method.	Normalization data for different countries and years is provided.	
ersion etzte Änderung	◎ ⊙ 000.00.00		
Wirkungskates	orien		
Name		Beschreibung	Referenzeinheit
Photochemical	oxidation - EBER (low NOx)	photochemical oxidation (ESIR: low NOx)	kg formed ozone
	oxidation - high NOx (incl. NOx, NMVOC average)	photochemical oxidation (high NOv) (incl. NOv avera	kg ethylene eg.
Climate change	- lower limit of net GWP100	global warming net (GWP100 min)	ka CO2 ea.
Opone laver des	oletion - ODP30	ozone laver depletion (ODP30)	ka CFC-11 ea.
Ozone laver des	oletion - ODPS	azone laver depletion (ODPS)	ka CFC-11 ea.
Climate change	- GWP20	global warming (GWP20)	kg CO2 eq.
Odour		odour	m3
Photochemical	oxidation - MOIR (high NOs)	photochemical oxidation (MOIR; high NOx)	kg formed ozone
Ozone layer des	oletion - COP40	gzone layer depletion (COP40)	kq CFC-11 eq.
Marine sedimes	stal ecotoxicity - MSETP20	Marine sedimental ecotosicity (MSETP20)	kg 1,4-dichlorobenzene e
Ozone layer des	oletion - COP20	ozone layer depletion (COP20)	kg CFC-11 eq.
Marine aquetic	ecotoxicity - MAETP20	Marine aquatic ecotoxicity (MAETP20)	kg 1,4-dichlorobenzene e
Climate change	- upper limit of net GWP100	global warming net (GWP100 max)	kg CO2 eq.
Photochemical	oxidation - high NOx (incl. NMVOC average)	photochemical oxidation (high NOs)(incl. NMVOC a	kg ethylene eq.
Ozone layer dep	oletion - ODP steady state (incl. NMVOC average)	ozone layer depletion COP steady state (incl. NMVO	kg CFC-11 eq.
Acidification po	rtential - generic	acidification (fate not incl.)	kg 502 eq.
	atic ecotoxicity - FAETP20	Freshwater aquatic ecotoxicity (FAETP20)	kg 1,4-dichloroberzene e
Radiation		radiation	DALYs (Egalitarian, Hieran
Photochemical	oxidation - MER (very high NOx)	photochemical exidation (MIR; very high NOs)	kg formed ozone
Freshwater aqu	etic ecotoxicity - FAETP200	Freshwater aquatic ecotoxicity (FAETP000)	kg 1,4-dichlorobergene e
Terrestrial ecots	wicity - TETP500	Terrestrial ecotosicity (TETP500)	kg 1,4-dichloroberzene e
Climate change		global warming (GWP500)	kg CO2 eq.
Ozone layer dej	oletion - COP25	ozone layer depletion (COP25)	kg CFC-11 eq.
Ozone layer dej	oletion - ODP10	ozone layer depletion (ODP10)	kg CFC-11 eq.
	- average Europe	eutrophication (incl. fate, average Europe total, ARIB)	kg NOx eq.
Marine sedimen	stal ecotonicity - MSETP500	Marine sedimental ecotoricity (MSETP500)	kg 1,4-dichlorobenzene e
Human toxicity	- HTP20	human toxicity (HTP20)	kg 1,4-dichlorobenzene e
	mental ecotoxicity - FSETP500	Freshwater sedimental ecotoxicity (FSETPS00)	kg 1,4-dichlorobenzene e
Ozone løyer dep		azone layer depletion (COP15)	kg CFC-11 eq.
Land use - land		Landuse increase of land competition	m2*yr
	iotic resources - elements, reserve base	abiotic depletion (elements, reserve base)	kg antimony eq.

4 Anwendungsbeispiel

Beispiel: **Multi-storey building construction**, Europa (ecoinvent Datenbank), berechnet in openLCA mit allen drei Wirkungsabschätzungsmethoden

LCa	
Neues Produkt	system
Erstellt ein neue	s Produktsystem
Name	Building construction RER
Beschreibung	^
	T.
Filter	
Referenzprozess	Puilding construction, hall, wood construction - CH Puilding construction, hall, wood construction - RoW Puilding construction, hall - CH Puilding construction, hall - RoW Puilding construction, multi-storey - RER Puilding construction, multi-storey - RER Puilding construction, multi-storey - RoW Puilding construction, air dried, solar - CH Puilding construction, air dried, solar - RoW Puilding construction, air dried, conventi Puilding construction, sold-air dried, conventi Puilding construction, non ventilated - CH Puilding construction, nulti-storey - RoW Puilding construction, multi-storey - Ro
Cut-off	0.0
	Fertigstellen Abbrechen


Beispiel: **Multi-storey building construction**, Europa (ecoinvent Datenbank), berechnet in openLCA mit allen drei Wirkungsabschätzungsmethoden - CML

Beispiel: **Multi-storey building construction**, Europa (ecoinvent Datenbank), berechnet in openLCA mit allen drei Wirkungsabschätzungsmethoden – **ReCiPe Hierarchist, fossil fuel**

Dani	ding construction	RER 6	Analysenergebnis von Building construction RER	Analysenerge	ebnis von Building co	nstruction RER
ont	tribution tree	•				
(C)	Flows	.♣. Rad	ium-226 - air/low population density			
(O)	Impact categories	Fos:	sil depletion 🔻			
Ве	eitrag	Prozess		Menge	Einheit	
_	eitrag a 100.00%	Prozess	building construction, multi-storey - RER	Menge 76.88607	Einheit kg oil eq	
_		Prozess	building construction, multi-storey - RER market for aluminium, wrought alloy - GLO			
_	100.00%			76.88607	kg oil eq	
_	d 100.00%		market for aluminium, wrought alloy - GLO	76.88607 25.74143	kg oil eq kg oil eq	
_	100.00% ⇒ 33.48% ⇒ 17.88%	-	market for aluminium, wrought alloy - GLO market for brick - GLO	76.88607 25.74143 13.74411	kg oil eq kg oil eq kg oil eq	
_	100.00% □ 33.48% □ 17.88% □ 16.01%	=	market for aluminium, wrought alloy - GLO market for brick - GLO market for copper - GLO	76.88607 25.74143 13.74411 12.30755	kg oil eq kg oil eq kg oil eq kg oil eq kg oil eq	
_		=	market for aluminium, wrought alloy - GLO market for brick - GLO market for copper - GLO market for concrete, normal - GLO market for sawnwood, softwood, kiln dried, planed - RER	76.88607 25.74143 13.74411 12.30755 5.74904	kg oil eq kg oil eq kg oil eq kg oil eq kg oil eq kg oil eq	
_		=	market for aluminium, wrought alloy - GLO market for brick - GLO market for copper - GLO market for concrete, normal - GLO	76.88607 25.74143 13.74411 12.30755 5.74904 3.90493	kg oil eq kg oil eq kg oil eq kg oil eq kg oil eq	

Beispiel: **Multi-storey building construction**, Europa (ecoinvent Datenbank), berechnet in openLCA mit allen drei Wirkungsabschätzungsmethoden – **Ecological scarcity, energy**

Beispiel: **Multi-storey building construction**, Europa (ecoinvent Datenbank), berechnet in openLCA mit allen drei Wirkungsabschätzungsmethoden

- → (natürlich) unterschiedliche Ergebnisse,
- →ähnliche Ergebnisstruktur.

5 Schlussfolgerungen

Schlussfolgerungen

In der Ökobilanzierung gibt es verschiedene aktuelle Indikatoren, um Ressourcenverbrauch abzubilden.

Diese Indikatoren werden üblicherweise parallel zu anderen verwendet, die die Umweltauswirkungen darstellen (climate change potential und andere)

Schlussfolgerungen

Die Ressourcen**effizienz** lässt sich in der Ökobilanz über die sogenannte funktionelle Einheit darstellen

Die vorhandenen Ressourcenindikatoren sind unterschiedlich, ihre Anwendung führt zu unterschiedlichen Ergebnissen; oft sind die Ergebnisse jedoch ähnlich.

→ Forschungs-, Kommunikationsbedarf.

Greenbelta

sustainability consulting + software

Vielen Dank.

Kontakt: Dr. Andreas Ciroth

GreenDelta GmbH

Müllerstrasse 135, 13349 Berlin, Germany

ciroth@greendelta.com

www.greendelta.com