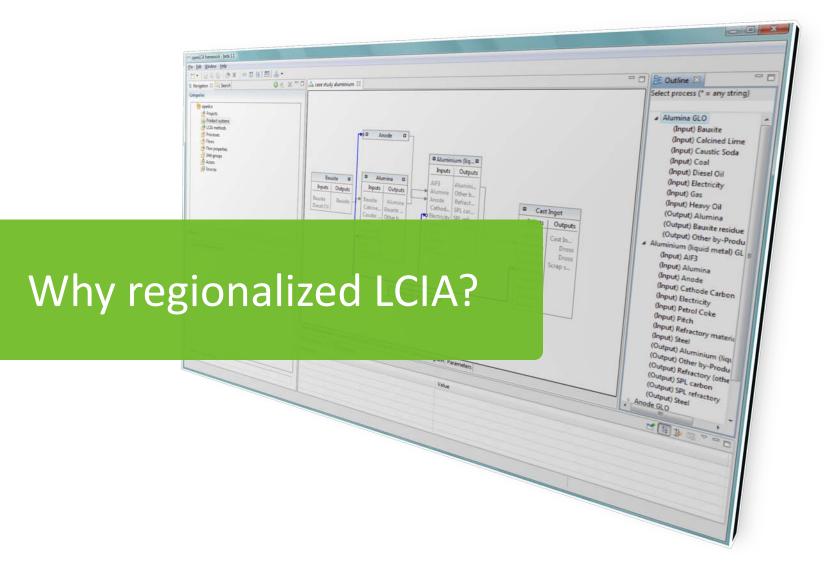
Greendelta sustainability consulting + software

Regionalized LCIA – new software implementation and agricultural case study


Cristina Rodríguez, Andreas Ciroth, Michael Srocka GreenDelta GmbH

October 8, 2014 San Francisco, USA

Content

- Importance of regionalized LCIA in agriculture
- Software enhancement:
 - Process locations extension
 - New approach for LCIA methods
 - Calculation framework
- Case study: corn production in USA
- Conclusions
- Outlook

Importance of regionalized LCA in agriculture

LCI:

• Wide variety of farming systems

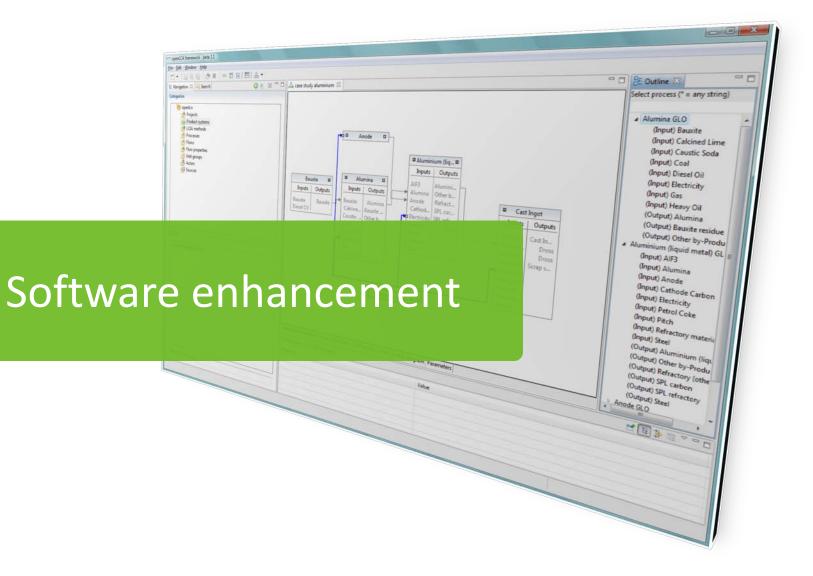
e.g. USDA crop database

LCIA:

• Commonly analysed impact categories: land use, abiotic resource depletion, eutrophication, climate change, etc.

Characterization factors (CFs) depend on site-specific characteristics:

• Climate, soil type, water availability, soil erosion, etc.

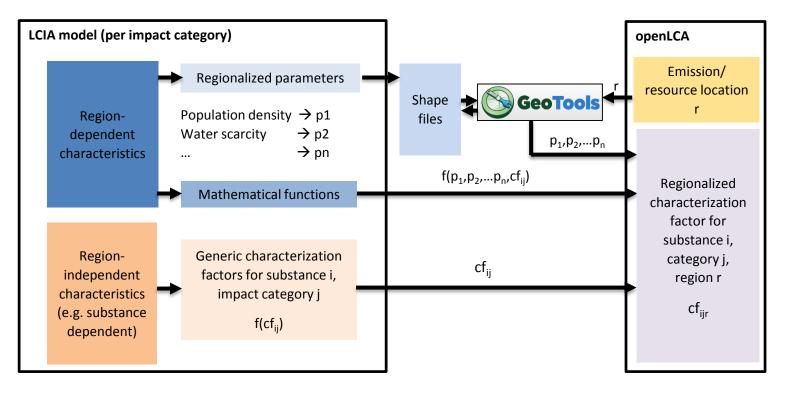


Regional variation in impact assessment

• Withdrawal of 1l of water for agriculture

Software: openLCA

- Free, open source LCA software developed by GreenDelta since 2006
- Written in Java
- Regionalized LCIA implemented in a project supported by the US Department of Agriculture (USDA), National Agricultural Library


www.openlca.org

Regionalised LCIA methods in openLCA

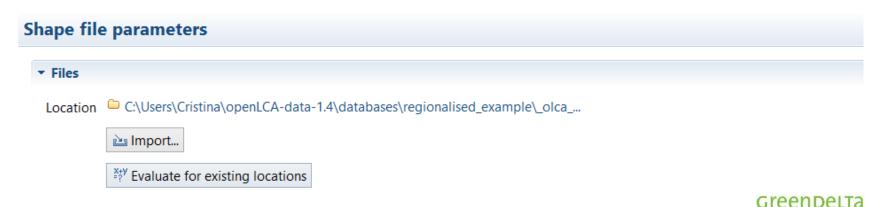
• Idea:

\rightarrow Parameterization of LCIA methods



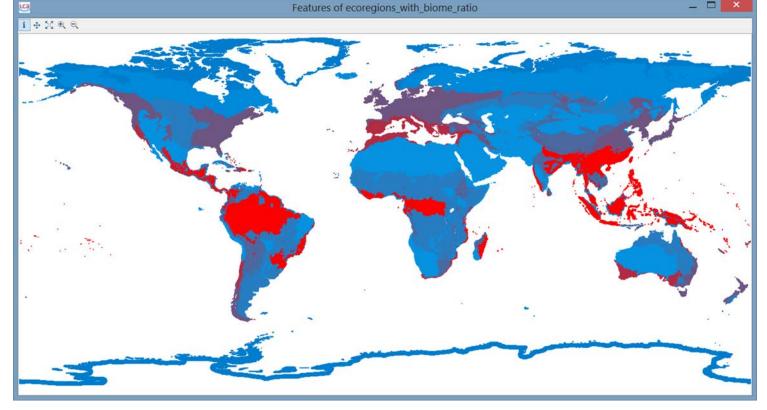
Parameterization of LCIA methods

• Formulas for calculating the characterisation factors (CFs) can be defined


• Input and dependent parameters can be used as in the process data sets

Impact factors					0 🗴
npact category 🔐 Land use					
Flow	Category	Flow property	Unit	Factor	Uncertainty
Occupation, arable	resource/land	Area*time	m2*a	(0.60*ratio_biom)/SA_CF	lognormal: gmean=1.36 g
Occupation, construction site	resource/land	Area*time	m2*a	(0.44*ratio_biom)/SA_CF	lognormal: gmean=1.00 g
Occupation, forest, intensive	resource/land	Area*time	m2*a	(0.04*ratio_biom)/SA_CF	lognormal: gmean=9.09E
Occupation, forest, intensive, clear-c	resource/land	Area*time	m2*a	(0.18*ratio_biom)/SA_CF	lognormal: gmean=0.41 g

Shapefiles containing regional characteristics


- Regional characteristics affecting the CFs can be defined with parameters:
 e.g. population density, precipitation variability,etc.
- Data for those characteristics is contained in shapefiles, which can be imported to openLCA
- Parameters are extracted during the shapefile import
- Shapefiles are stored in the database

Shapefiles containing regional characteristics

Parameters of ecoregions_with_biome_ratio

Name	Minimum	Maximum	
f_x CLS_CODE	0.0	1144.0	
fx ECO_ID_U	10000.0	17109.0	
f _x ECO_NUM	1.0	99.0	
f_x ratio_biom	0.20929077	1.96750671	

Binding shapefiles and LCIA method parameters

- Parameters of shapefiles can be bound to input parameters
- Default value of parameters is used for normal calculations and formula evaluation
- In regionalized assessment the parameter value derived from the shapefile is used for the formula evaluation

Input parameters

Name	Value	Uncertainty	Description	External source	
ratio_biom	1.0	none		×	
Ecofactor	610.0	none		ecoregions_ratio_biomes	

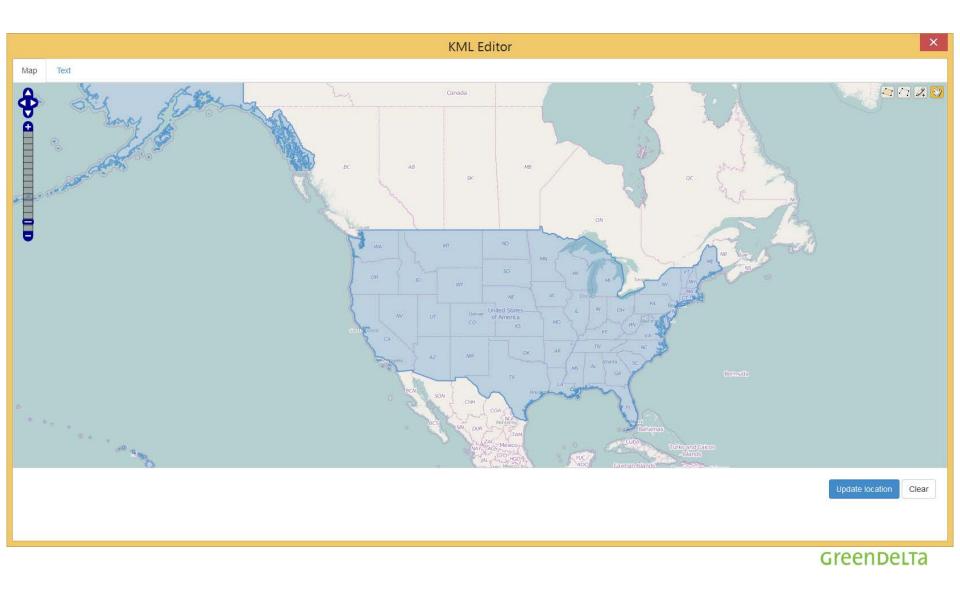
Extension of locations in openLCA (I)

Traditional approach:

- A list of locations available in the database level.
- The geographic information of the locations was limited to a pair of latitude, longitude data.
- The processes could only used locations from the pre-defined list.
 - Usually, only countries, global or group of countries (e.g. UCTE, EU, etc.)

GreenDell

Geography		
Location	United States	*
	United States	^
	United States Minor Outlying Islands	
_	Uruguay	
Geography comment	Uzbekistan	
	Vanuatu	
	Venezuela, Bolivarian Republic of	
	Viet Nam	\sim

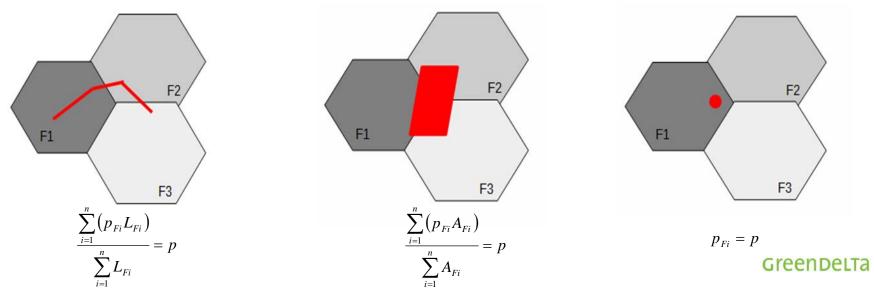

Extension of locations in openLCA (II)

New approach:

- KML data can be added to each location (polygons, lines, points):
 - Import of kmz/xml files with geographic data.
 - Write coordinates in the "Text editor".
 - Draw the polygons, lines or points in the KML editor.
- New locations can be defined in the process editor.

Extension of locations: KML editor (map)

Extension of locations: KML editor (text)


		KML Editor	×
Мар	Text		
1	xml ve</td <td> rsion="1.0" encoding="UTF-8"?></td> <td>~</td>	 rsion="1.0" encoding="UTF-8"?>	~
2	<kml td="" xml<=""><td>ns="http://earth.google.com/kml/2.1"></td><td></td></kml>	ns="http://earth.google.com/kml/2.1">	
3	<folde:< td=""><td></td><td></td></folde:<>		
4		xe>OpenLayers export	
5		cription>Exported on Tue Oct 07 2014 20:37:00 GMT+0200	
6		cemark>	
7		aame>OpenLayers_Feature_Vector_35130	
8		escription>No description available	
9		lultiGeometry>	
10		<pre><polygon></polygon></pre>	
11		<outerboundaryis></outerboundaryis>	
12 13			
	155 507	<pre><coordinates>-155.59328873999996,20.139185279999996 -155.58013709,20.131201269999995 -155.5692592,20.134043480000003 -155.55928565,20.14047719 -155.54889868,20.142957660000015 19457999999,20.135102840000002 -155.49014258,20.11283029999985 -155.44572669000001,20.10520803 -155.33689612000003,20.06285918999994 -155.20630977,19.99947805</coordinates></pre>	
		1945/999999,20.133102840000002 -155.49014258,20.11283029999985 -155.445/2689000001,20.10520803 -155.33689612000003,20.06285918999994 -155.206309/7,19.9994/805	
		68836,19.73915801999998 -155.01763258000003,19.745662249999988 -154.9931865,19.743188719999983 -154.98125851200007 -154.97637549,19.71740224000002	
		26229,19.666759340000006 -154.9616938,19.653220110000014 -154.92149512,19.61373931999997 -154.86987036,19.58743600999998 -154.9478451,19.543045959999997	
		65255,19.522117000000005 -154.80527482,19.49997364999999 -154.81623022,19.479561460000003 -154.82889055,19.463929339999996 -154.91084977,19.419797670000012	
		2395,19,40863555999993 -155.00717464,19.33210275999987 -155.0240886699997,9.3273452999988 -155.04921342,19.32466135999999 -155.068669544,19.317865910000002	
		24113,19.299391580000016 -155.17147986,19.284353739999997 -155.18892066,19.275517069999992 -155.26775305,19.27892771000001 -155.28589148,19.274483540000006	
		19047,19.269470930000004 -155.32237504,19.252262679999994 -155.3545953,19.22198029000005 -155.36704932000004,19.217484439999996 -155.38337906999996,19.213479510000003	
		69344,19.203686829999988 -155.42167131,19.179915669999986 -155.43588232,19.16963205999999 -155.48683529,19.142398579999995 -155.50184728999997,19.13756682999999	
	-155.545	20382,19.09800852000001 -155.5544539,19.082428080000014 -155.56941422999998,19.025687360000006 -155.61349422,18.965820210000004 -155.62742101999999,18.957396950000003	
	-155.637	93717999997,18.953133649999998 -155.65617896,18.934349260000005 -155.66840043,18.930137630000008 -155.66902055,18.935589499999995 -155.68609961000004,18.964269919999999	
	-155.708	70805000004,18.985198870000005 -155.74431310999998,19.00605031000002 -155.78495662,19.023026019999996 -155.82262874,19.03250864999999 -155.85510738,19.03051909999999	
	-155.863	160814999988,19.03250864999999 -155.86885331,19.04183623999998 -155.87133378,19.055582169999994 -155.87595882,19.068036190000004 -155.88779272999997,19.073513900000002	
	-155.899	83333,19.082428080000014 -155.9049493,19.10369292999999 -155.90399329,19.187150370000012 -155.87823259,19.346494649999997 -155.87787085,19.354633689999993 -155.88184994,19.36695852	
	-155.895	415,19.38964447 -155.91885026000003,19.471344909999996 -155.91957373,19.47615082000001 -155.91817847,19.486977029999988 -155.91885026000003,19.49183462 -155.92231258,19.492558090000013	
	-155.935	i69678000003,19.49111115 -155.93931413,19.49183462 -155.95140641000003,19.52674205 -155.95298254,19.535914610000003 -155.95432613,19.559220679999996 -155.95830522000003,19.581053979999997	
	-155.964	71309,19.601827900000007 -155.97347225,19.622162580000012 -155.99693335,19.656088160000003 -156.02339168,19.68513031 -156.04377804,19.717040510000018 -156.04917822,19.75933767000002	
	-156.037	86108,19.782902120000003 -156.01649288,19.800911360000004 -155.99577063,19.814269710000005 -155.98649471,19.824217429999997 -155.98109452,19.843131 -155.96698686,19.85408641000001	
	-155.925	05143,19.868581639999988 -155.90487179,19.901887110000008 -155.89494991,19.91325592 -155.85678687,19.96821381 -155.84993974,19.975138449999992 -155.8183396,19.99947805	
	-155.808	96033,20.012578020000007 -155.80862442999998,20.029915469999988 -155.81924394,20.04950083 -155.82262874,20.053583270000015 -155.87226395999997,20.11303700999999	~

Update location Clear

Calculation framework

Linking of process locations and LCIA methods spatial units

- GeoTools libraries integrated in openLCA
 - The intersection between shapefiles features and process geometries is calculated.
 - \rightarrow A weighted mean calculated for each regional parameter

Calculation framework

Regionalised LCIA calculation

- Creation of a regionalised result matrix for the inventory (GR)
- Creation of a regionalised LCIA matrix (CR)
- Creation of the regionalised LCIA result (RR)

RR = CR * GR

Regionalised LCIA: Calculation procedure

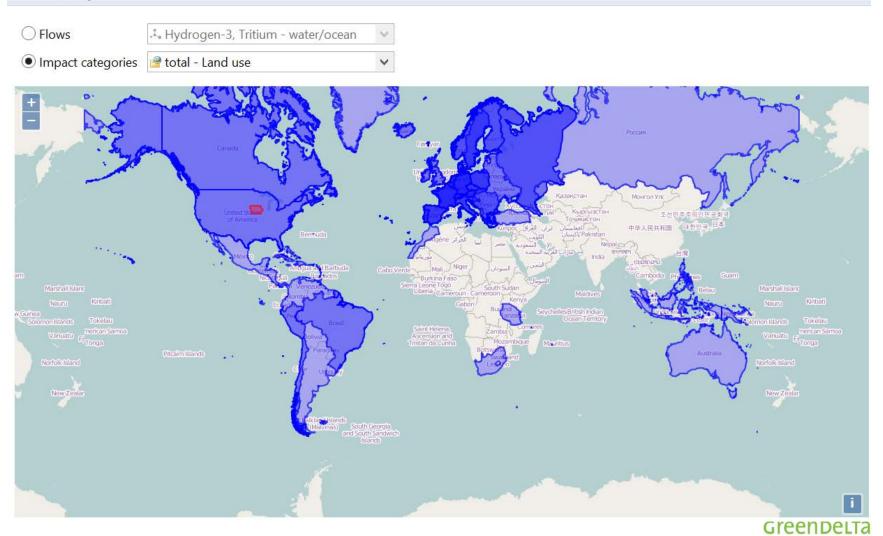
• Select the "Regionalized LCIA" option in the calculation properties window:

 \rightarrow The impact method select must contain regionalised impact factors

<mark></mark>	Calculation properties – 🗖	x
Calculation properties Please select the properties for th	e calculation	
Allocation method	None	~
Impact assessment method	ecological scarcity 2013 (per country and biome)	\checkmark
Normalization and weighting set		~
Calculation type	○ Quick results	
	○ Analysis	
	Regionalized LCIA	
	O Monte Carlo Simulation	
	Number of iterations: 100	
Save as de	fault Reset Calculate Cancel	

Regionalised LCIA: Calculation procedure

• To reduce the calculation time for complex systems, it is recommended to evaluate the intersections with the existing database locations when the impact method is defined:


Shape file parameters

Name	Minimum	Maximum
f_x Critical F	0.004	1646.6
f_x Current F	0.0	761.0
f_x Ecofactor	0.0	2.0E7
f. Normalizat	2.614	2.614

Regionalised LCIA: Results

Result map

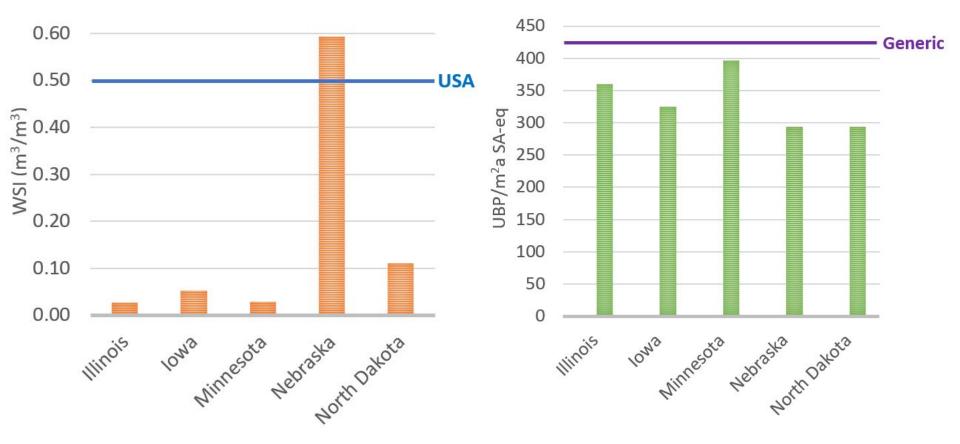
Scope

- Functional unit: Production of 1kg of corn grain, at harvest in 2005; at farm;
 85%-91% moisture
- Production in 5 estates of US: Illinois, Iowa, Minnesota, Nebraska and North Dakota
- System boundaries: Cradle to farm-gate
- Foreground system:
 - USDA crop database
 - KML data: US Census Bureau
- Background system:
 - ecoinvent 2.2. unit processes, GaBi 2012 full US
 - KML data: ecoinvent 3 geographies

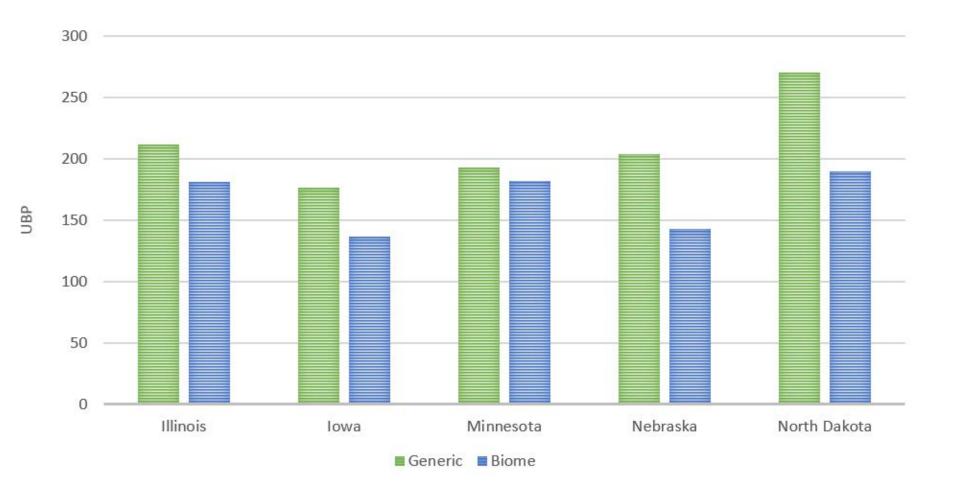
Regionalized impact categories

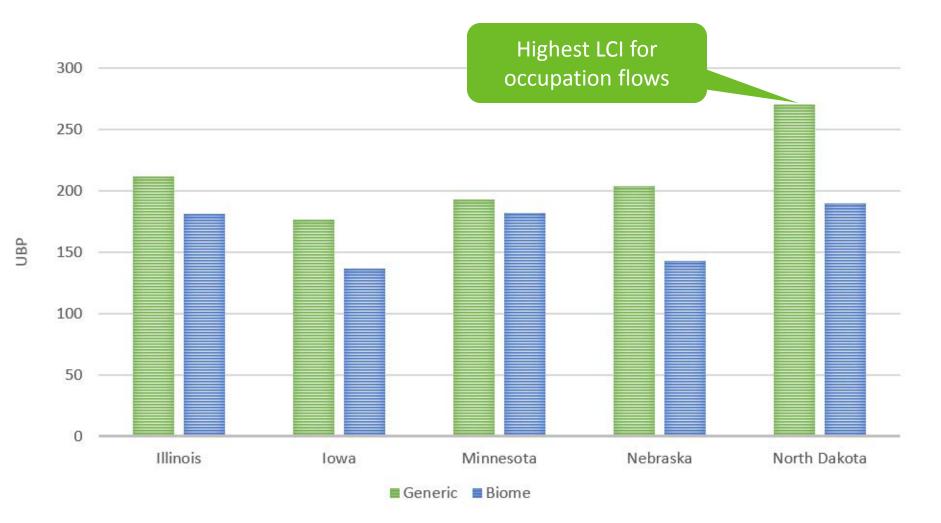
- Land use:
 - de Baan et al. (2012), as implemented in Ecological Scarcity 2013: *Parameter*: Ratio of species densities of biomes 1 to 4 to species density in biome 5

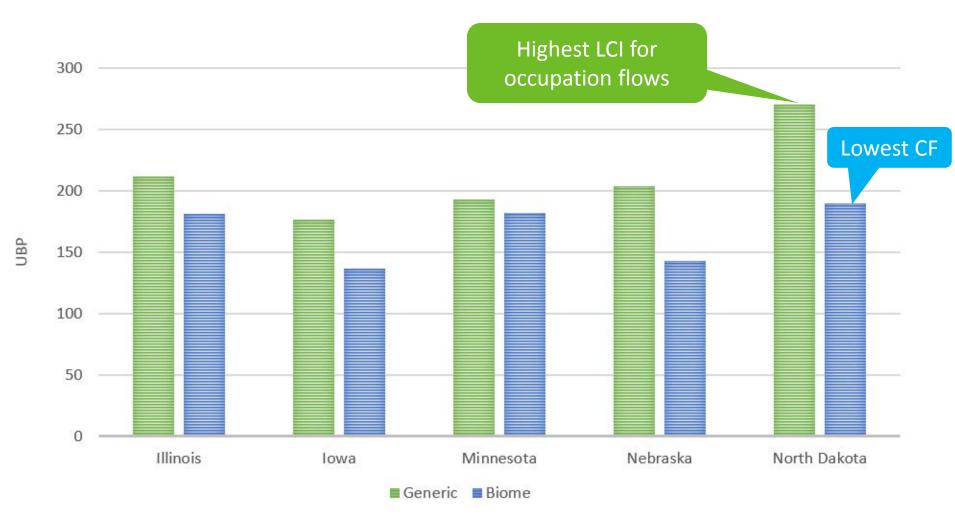
 \rightarrow Generic: biome 5 values

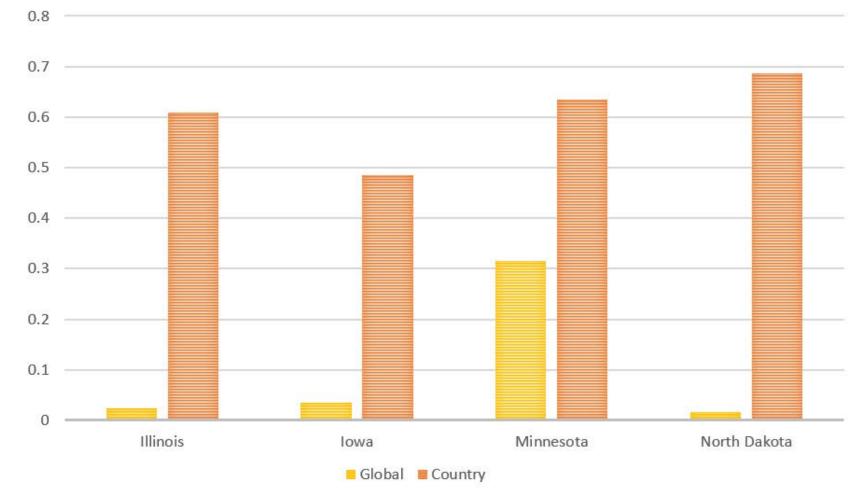

- Freshwater consumption:
 - Ecological Scarcity 2013 (Frischknecht and Büsser Knöpfel 2013)
 - Pfister et al. (2009), as implemented in Enhanced Eco-Indicator 99:

Parameter. Water stress index (WSI). Data per country and watershed

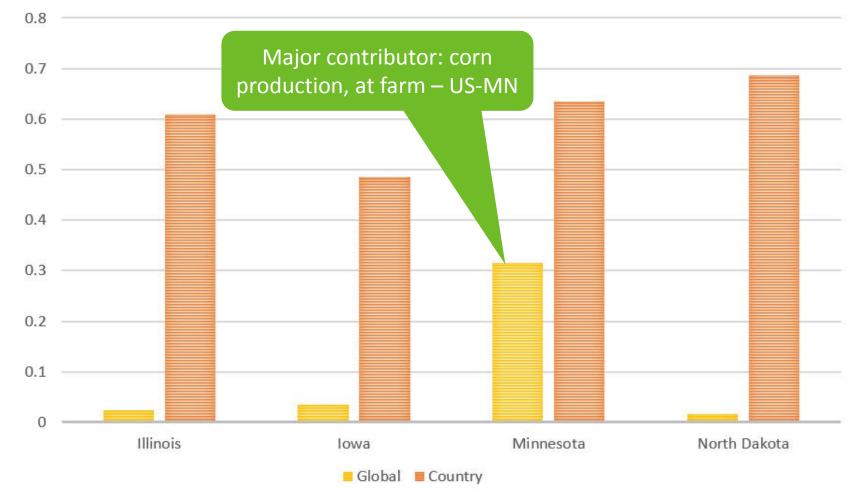

Regionalized characterization factors

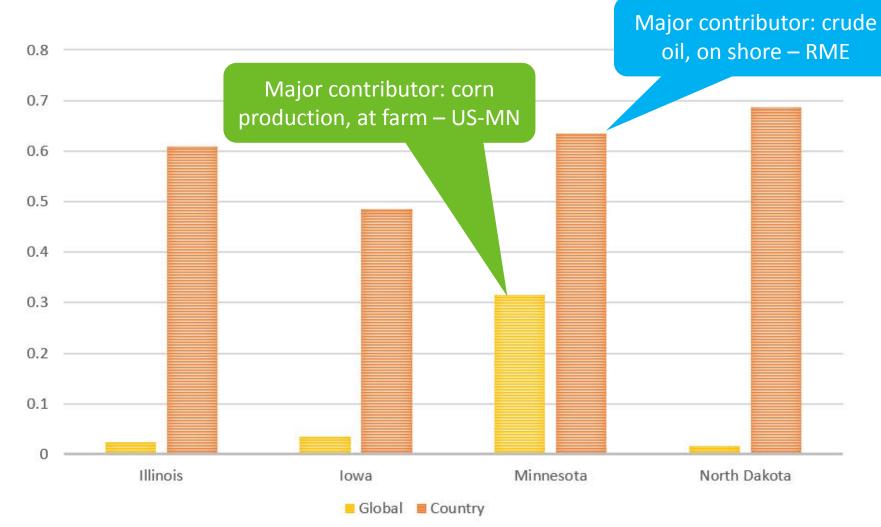

• Eco-factor for land use (arable)


LCIA results: land use



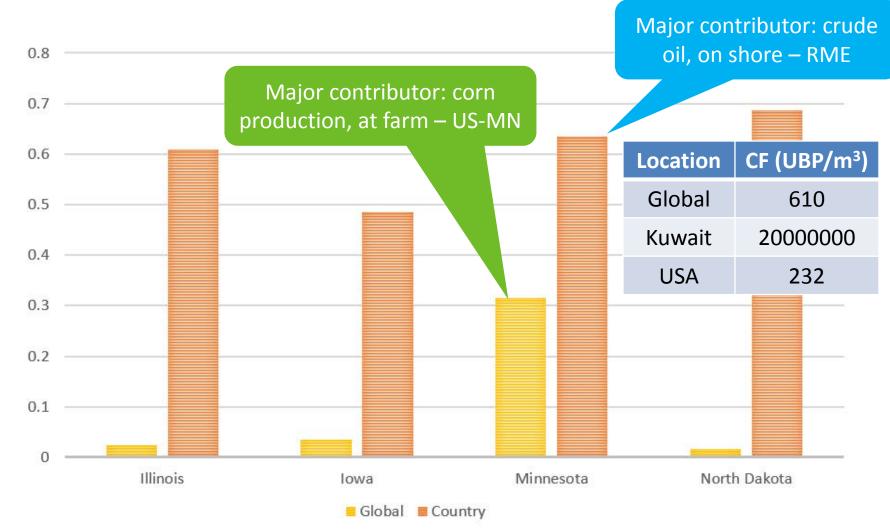
LCIA results: land use


LCIA results: land use

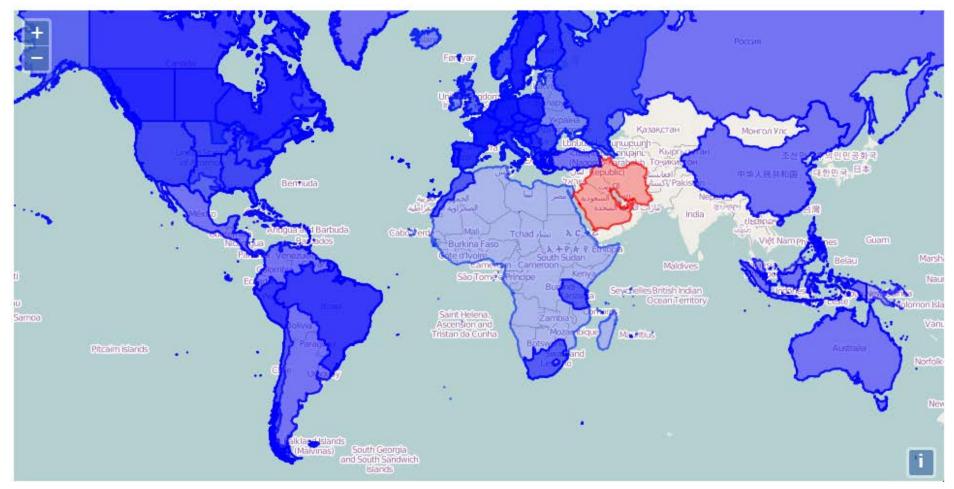


UBP

GreenDelTa

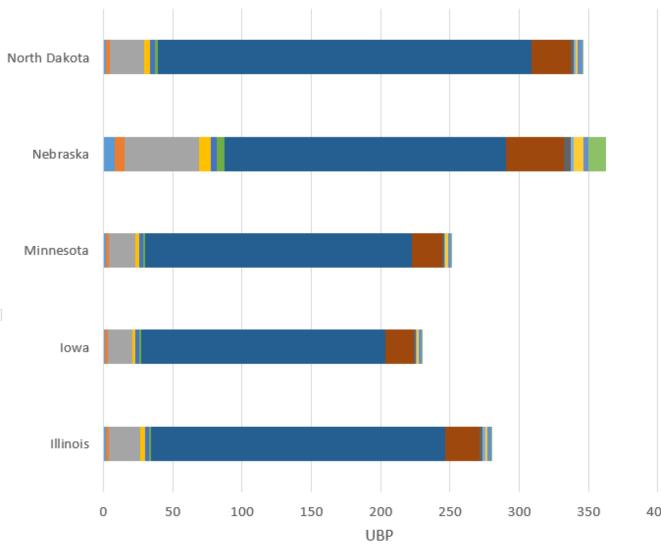


UBP



UBP

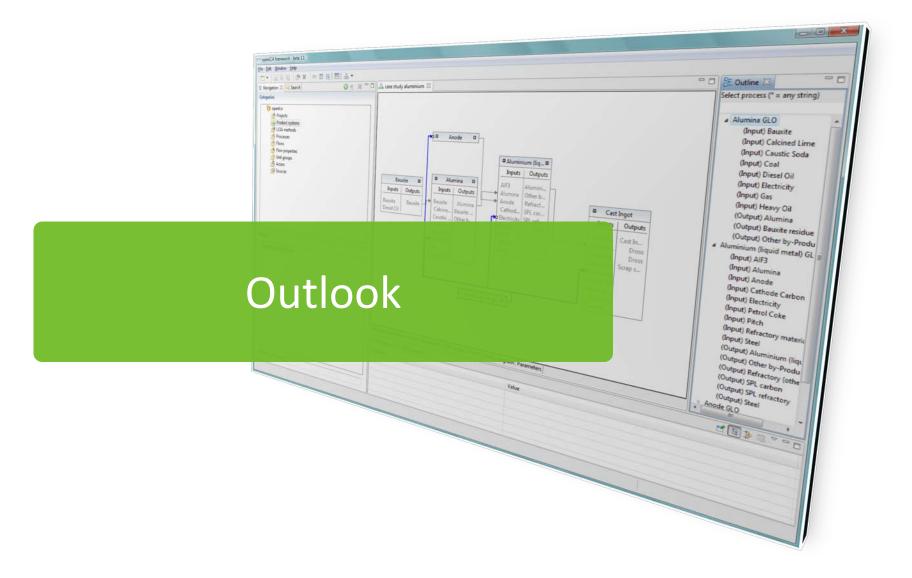
GreenDelTa


Impact categories et total - Water resources

GreenDelta

Results for Minnesota. Regionalized data per country

LCIA results: Ecological Scarcity 2013


	total - Carcinogenic substances into air
	total - Energy resources
	■ total - Global warming
	total - Heavy metals into air
	total - Heavy metals into soil
	total - Heavy metals into water
	■ total - Land use
	total - Main air pollutants and PM
	total - Mineral resources
	total - Non radioactive waste to deposit
	total - Ozone layer depletion
	■ total - Pesticides into soil
	total - POP into water
	total - Radioactive substances into air
	total - Radioactive substances into water
	total - Radioactive waste to deposit
	total - Water pollutants
0	total - Water resources

Conclusions

- Regionalized LCIA in openLCA works successfully without affecting significantly the calculation time required
- High variations in results due to different inventory and different characterization factors between locations

 \rightarrow Added complexity to results interpretation

- The most suitable spatial resolution per parameter should be defined
- Weighted aggregations might be useful for avoiding misleading values (e.g. emission proxies)

Future software development

- Regionalized LCIA implementation in the Project level (i.e. comparative analysis)
- Further results views (e.g. contributions per location, etc.)
- Background processes tag: avoid data sets from generic databases when performing a regionalized LCIA

Other ideas:

- Geographic distributions of the processes when determining the location of each activity
- Consider geographic uncertainty per data set exchange and LCIA CF
- Transport pathways of emissions: does the impact occur in the process location?
- Seasonal variations of regional parameters

Thank you!

Greendelta

sustainability consulting + software

Cristina Rodríguez GreenDelta GmbH Muellerstrasse 135, 13349 Berlin rodriguez@greendelta.com www.greendelta.com