Greendelta

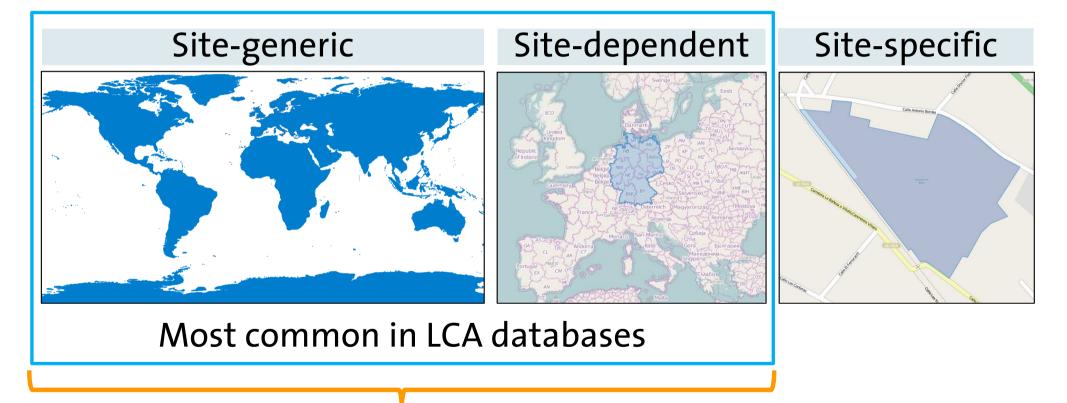
sustainability consulting + software

Challenges of linking regionalised LCIA methods and LCA databases

Cristina Rodríguez, GreenDelta GmbH Berlin May 12, 2014

Challenges of linking regionalised LCIA and LCA databases

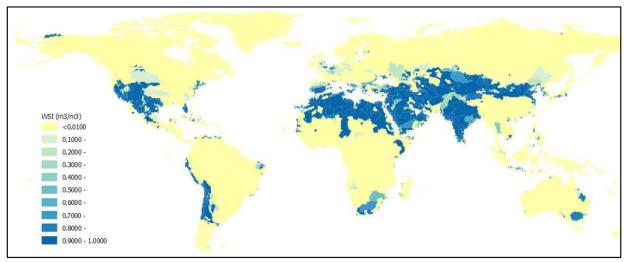
- **1 Mapping process locations and LCIA methods spatial units**
- 2 Spatial uncertainty
- **3** Software implementation


1 Mapping inventory and LCIA methods spatial units

Challenges

- Different spatial scales between processes and methods
- Several levels of regionalisation within a life cycle
- Quantity of different locations in a high spatial resolution regionalised inventory
- Different spatial units per impact category

Levels of regional differentiation in the inventory Foreground processes

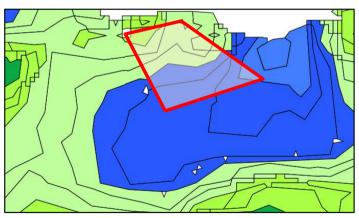


Background processes

GreenDelta

Regionalised LCIA methods

Spatial units may be different from the inventory and vary per impact category
e.g. biomes, watersheds, etc.


WSI per m3 water consumed (Source: El99+)

Linking inventory and LCIA methods

GIS (Geographic Information Systems)

- Calculate intersected areas of the impact assessment spatial units by each inventory geometry

- Weighted average characterisation factors (CFs)

 \rightarrow Geographical distribution of emissions

GreenDeLTa

Linking inventory and LCIA methods

 LCIA method developers provide also aggregated CFs at lower spatial resolution scales

→ Higher spatial variability

 For very detailed regionalised inventories the weighted mean CFs should be calculated in the LCA software

 \rightarrow GIS + LCA tools is now a reality

e.g. Brigthway2, openLCA

2 Spatial uncertainty

Spatial uncertainty

- High spatial resolution might add precision to results but decrease relative accuracy
- Spatial uncertainty of inventory and CFs should be considered
 - → What is the likelihood of an activity occurring in a specific location?
 - → What is the real area of impact of an emission?

3 Software implementation

Challenges

- High amount of data:
 - \sum processes*elementary exchanges*locations
 - \rightarrow Data storage capacity
 - \rightarrow Computing power
 - \rightarrow Interpretation of results by non-expert users
- Adapt calculation frameworks
- Extension of process locations → site-specific differentiation
- Spatial uncertainty

Parameterization of regionalised LCA systems

- Separate site-dependent and independent information
- Regional characteristics are included as parameters in process data sets and LCIA methods
- Data for regionalised parameters retrieved from GIS datasets

 \rightarrow Reduces the amount of data to store

→Enhances sensitivity assessment of spatial variation

New calculation frameworks

- A new dimension needs to be added to the calculation

→In matrix-based LCA new matrices are created

- Calculation of weighted mean CFs using GIS
 - → Is the speed of the calculation highly affected?
 - → Is feasible in very complex LCAs (e.g. ecoinvent 3 product systems)?

Regionalised results

 Contributions per flow/impact category and location

→ Easily interpretable?

	Flow	Compartment	Coordinates	Amount	Unit
	Ammonia	river	[7.27713346481301,47.03916583052327]	0.023	kg
	Ammonia	river	[-5.907967686653199,42.305130129490706 - 5.90831637382513,42.3045032823678 - 5.9102636575700105,42.30480877193532]	0.157	kg
	Ammonia	river	[7.191857993602852,47.049604064965536 7.194218337536014,47.04843441171633 7.1960744261742775,47.04766681283223 7.195162475109187,47.04725742224354]	1.035	kg
	Ammonia	river	[-5.940331941651743,42.3729584457095]	0.003	kg
				Green	Delta

4 Conclusions

Conclusions

- GIS can be used for linking regionalised inventories and LCIA methods
- Regionalised LCIA should not compromise accuracy of results or calculation time
- High spatial resolution differentiation in inventories still under debate
- Regionalisation in LCA needs interrelation of LCI databases, LCIA methods and LCA software developers

Greendelta

sustainability consulting + software

Thank you!Contact:Cristina RodríguezGreenDelta GmbHMüllerstrasse 135, 13349 Berlin, Germanyrodriguez@greendelta.comwww.greendelta.com